
- •Концепции современного естествознания Лекция 1. Тема: Введение в дисциплину.
- •1. Естествознание. Определение и содержание понятия. Задачи естествознания
- •2. Взаимосвязь естественных наук. Редукционизм и холизм.
- •3. Фундаментальные и прикладные науки. Технологии
- •4. Тезис о двух культурах.
- •Лекция 2. История развития естествознания
- •1. Этапы (стадии) познания природы
- •2. Глобальные естественнонаучные революции
- •Роль космологии в естественнонаучных революциях
- •Концепции современного естествознания Лекция 3. Методология научных исследований
- •1. Понятие методологии и метода
- •2. Методы научного познания 2.1. Общенаучные методы
- •2. Методы эмпирического и теоретического познания
- •3. Формы научного знания
- •4. Процесс научного познания
- •5. Критерии истинности научного знания
- •Лекция 4. Механика и методология Ньютона
- •1. Движение - одна из основных проблем естествознания
- •2. Механика Галилея как основа механики Ньютона
- •3. Механика Ньютона
- •4. Ньютоновская методология исследований
- •5. Оптика Ньютона – предвосхищение современной концепции о двойственной природе света
- •Лекция 5. Механическая картина мира (мкм)
- •1. Понятие научной картины мира
- •2. Формирование механической картины мира (мкм)
- •3. Основные понятия и законы мкм
- •4. Основные принципы мкм
- •Лекция 6. Термодинамическая картина мира (I)
- •1. Промышленная революция и развитие теории теплоты
- •2. Работа в механике. Закон сохранения и превращения энергии в механике
- •3. Теплородная и кинетическая теория теплоты
- •4. Термодинамика и статистическая физика
- •Лекция 7. Термодинамическая картина мира (II). Второе начало термодинамики
- •1. Идеальный цикл Карно.
- •2. Энтропия. Термодинамическая трактовка.
- •3. Энтропия. Вероятностная трактовка.
- •Лекция 8. Термодинамическая картина мира (III). Стрела времени
- •1. Вероятность как атрибут больших систем.
- •2. Стрела времени
- •3. Проблема тепловой смерти Вселенной и флуктуационная гипотеза Больцмана.
- •Лекция 9. Электромагнитная картина мира (эмкм)
- •1. Основные экспериментальные законы электромагнетизма.
- •2. Теория электромагнитного поля д. Максвелла
- •3. Электронная теория Лоренца.
- •Лекция 10. Специальная теория относительности. Основные идеи общей теории относительности
- •1. Проблема равноправия инерциальных систем отсчета и мирового эфира.
- •2. Постулаты и основные следствия сто
- •3. Относительность промежутка времени:
- •3. Основные идеи общей теории относительности.
- •1. Свойства пространства-времени зависят от движущейся материи.
- •2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.
- •3. Частота света под действием поля тяготения должна смещаться в сторону более низких значений.
- •4. Основные понятия и принципы эмкм
- •Лекция 11. Квантово-полевая картина мира (кпкм)
- •1. Формирование идеи квантования физических величин
- •2. Корпускулярно-волновой дуализм света и вещества.
- •3. Соотношения неопределенностей Гейзенберга
- •4. Основные понятия и принципы кпкм
- •Лекция 12. Многообразие и единство мира
- •1. Структурные уровни материи
- •2. Элементарные частицы, фундаментальные частицы и частицы – переносчики фундаментальных взаимодействий
- •3. Атомное ядро
- •4. Молекулы и реакционная способность веществ.
- •5. Макроскопические тела. Фазовые переходы.
- •Лекция 13. Мегамир, основные космологические и космогонические представления (I)
- •1. Основные представления о мегамире
- •2. Солнечная система
- •3. Гипотезы о происхождении планет Солнечной системы
- •Лекция 14. Мегамир. Основные космогонические представления (II)
- •1. Звезды, их характеристики, источники энергии
- •2. Галактики и метагалактики
- •3. Структура и геометрия Вселенной
- •Лекция 15. Мегамир, основные космогонические представления (III)
- •1. Эволюция звезд
- •2. Возникновение Вселенной. Теория Большого Взрыва
- •3. Антропный принцип.
- •Лекция 16. Химическая эволюция Земли
- •1. Химическая эволюция Земли
- •2. Понятие самоорганизации в химии.
- •3. Общая теория химической эволюции и биогенеза
- •Лекция 17. Специфика живого
- •1. Предмет изучения, задачи и методы биологии
- •2. Специфика и системность живого
- •3.Уровни организации живых систем
- •Лекция 18. Термодинамика живых систем. Жизнь как информационный процесс.
- •1. Термодинамика живых систем
- •2.Управление и регулирование в живых системах 2.1 Задачи управления и регулирования
- •2.2 Информационные связи внутри организма
- •2.3 Цели и специфика управления в живых системах
- •Лекция 19. Концепция эволюции в биологии
- •1. Эволюционная теория Дарвина – Уоллеса
- •2 Современная (синтетическая) теория эволюции
- •Лекция 20. Человек
- •1. Место человека в системе животного мира и антропогенез
- •2. Основные этапы развития человека разумного
- •3. Дифференциация на расы. Расы и этносы
- •4. Эколого-эволюционные возможности человека
- •5. Биосоциальные основы поведения
- •Лекция 21. Биосфера и цивилизация
- •1. Биосфера и место человека в биосфере
- •2. Антропогенный фактор и глобальные экологические проблемы
- •3. Негэнтропийный взгляд на экологические проблемы
- •Лекция 22. Основные концепции и перспективы биотехнологии
- •1. Микробиология
- •2. Инженерная энзимология
- •3. Перспективы биотехнологии и проблемы биологической безопасности. Биоэтика
- •3.1. Генная и клеточная инженерия
- •3.2. Евгеника
- •3.3. Клонирование
- •3.4. Расшифровка генома человека
- •3.5. Биоэтика
- •Контрольные вопросы
- •Литература
- •Лекция 23. Принципы симметрии в научной картине мира
- •1. Понятие симметрии
- •2. Симметрия пространства – времени и законы сохранения
- •3. Симметрия и асимметрия живого
- •4. Нарушение симметрии как источник самоорганизации
- •Лекция 24. Эволюционно-синергетическая парадигма
- •1. Концепция самоорганизации в науке
- •2. Основные понятия и принципы синергетики
- •Лекция 25. Эволюционно-синергетическая парадигма (продолжение)
- •1. Примеры самоорганизации в неживой природе
- •2. Самоорганизация в социальных системах
- •Лекция 26. Естествознание в мировой культуре
- •1. Проблема двух культур
- •2. Перспективы интеграции знаний в науке будущего
- •Рабочая программа по учебной дисциплине "Концепции современного естествознания" для направлений 521500, 521600, 522000, специальностей 060300,060400,060800,0,6100, 061400
- •1. Цели и задачи курса
- •2. Требования к знаниям
- •3. Структура и объем курса
- •4. Содержание дисциплины
- •Тема 1. Две культуры как отражение двух типов мышления
- •Тема 2. Физика глазами гуманитария. Физические картины мира.
- •Тема 3. Физика как целое.
- •Тема 4. Жизнь. Биологическая картина мира.
- •Тема 5. Биосфера и цивилизация
- •Тема 6. Основные концепции и перспективы биологии
- •Тема 7. Эволюционно-синергетическая парадигма
- •5. Перечень лабораторных работ (по 4 час.)
- •6. Перечень практических и семинарских занятий
- •7. Расчет часов по темам (для 522000, 061400)
- •8. Методические рекомендации
- •9. Литература
- •4.1 Основная
- •4.2 Дополнительная
- •Лабораторная работа №1. Фрактальные структуры в окружающем мире
- •1. Теоретический материал
- •1.1 Фрактальные структуры
- •1.2 Фрактальная размерность
- •1.3. Фрактальные кластеры
- •2. Порядок выполнения работы
- •Наверх Лабораторная работа №2. Дискретные модели динамических систем. Клеточные автоматы
- •1. Теоретический материал
- •1.1. Представление сложных динамических процессов в виде дискретных систем
- •1.2. Моделирование процесса роста с помощью клеточного автомата
- •2. Выполнение лабораторной работы
3. Теплородная и кинетическая теория теплоты
До середины 19-го в. понятия «теплоты» и «температуры» не разделялись. Так, в словаре церковно-славянского русского языка, середина 19 в. можно прочитать следующее: «Температура есть мера сгущения теплорода, показываемая в градусах термометром». и «Теплород – вещественная причина жара, тепла и холода, непостижимо тонкая жидкость, изливающаяся из Солнца и проникающая во все тела физического мира, невидимая, невесомая и только ощущением ощущаемая». Само слово теплород в русском языке является переводом-«калькой» латинского слова «калория».
Серьезный (но не окончательный) удар теории теплорода был нанесен опытами графа Б. Румфорда (Бенджамин Томпсон)
А. Эйнштейн и Л. Инфельд писали: «В истории физики часто встречаются такие испытания, которые способны произвести приговор о жизни или смерти теории: они называются crucis (решающими) экспериментами... Такой решающий эксперимент был проведен Румфордом; он нанес смертельный удар субстанциальной теории теплоты» [2]. Исследования Румфорда касались вопроса об эквиваленте теплоты и механической работы.
Опыты Румфорда. Румфорд проводил опыты с трением. Теплородная теория объясняла выделение теплоты при трении тел друг о друга тем, что при трении тела как бы «выжимают» из себя теплород, вследствие чего количества теплорода в них (теплоемкость) должны изменяться.
В своей известной работе «Исследование источника тепла, вызываемого трением» (1798 г.) Румфорд привел результаты эксперимента, связанного со сверлением пушечного ствола. В течение 2,5 часов за счет трения было получено количество теплоты, достаточной для превращения в пар 12 кг воды при получении всего лишь 270 г. металлической стружки. Далее было показано, что стружка имеет такую же удельную теплоемкость как исходный материал отливки, т.е. о никакой «выжимке» не могло быть речи, и теплота не могла быть получена за счет «выжимания» теплорода из металла. «... источник теплоты, порожденный трением, - писал Б. Румфорд, - оказался в этих экспериментах неисчерпаемым». Следовательно, нечто, которое любое изолированное тело или система тел может поставлять без ограничения не может быть материальной субстанцией.
Тем не менее, несмотря на опыты Румфорда теплородная теория не была изжита. Для окончательной победы кинетической теории потребовались исследования обратных процессов – превращения теплоты в работу. Такими исследованиями стали работы по исследованию функционирования тепловых машин, получивших к началу 19 в. широкое распространение. К этому времени встала задача о повышении их эффективности, для чего был необходим теоретический анализ процесса превращения теплоты в работу. Это и сделал Сади Карно в 1827 г. Тогда было уже совершенно ясно, что теплота и механическая работа обратимы одна в другую. Для торжества кинетической теории важно было установить механический эквивалент теплоты.
Количественное соотношение для превращения «механическая работа ® теплота» было определено немецким врачом Робертом Майером. Он установил, что теплоемкости газа в процессах при постоянном давлении (Ср) и при постоянном объеме (Сv) неодинаковы, причем Ср>Сv . Действительно, при р=const изменение объема V газа сопровождается толканием поршня, т.е. совершением работы. Если рассматривать теплоту как “силу”, рассуждал Майер (а под “силой” он понимал то, что впоследствии стало называться энергией), то понятно, почему Ср>Сv . Причем если найти DС = Ср - Сv и сопоставить с работой А, можно получить механический эквивалент теплоты.
Достаточно точно значение механического эквивалента теплоты было определено Джоулем. Джоуль поставил опыт, в котором опускающийся груз вращал лопатку, помещенную в различные жидкости. Перемешивание жидкости приводило к ее нагреванию. Сопоставляя значение механической работы опускающегося груза с количеством теплоты, необходимым для нагревания жидкости на определенную температуру, Джоуль определил значение механического эквивалента теплоты.
К началу документа