
- •1. Теория подобия и физическое моделирование процессов 6
- •Теория подобия и физическое моделирование процессов
- •Понятие о подобии физических явлений
- •Понятие об обобщённых безразмерных величинах
- •Первая теорема подобия
- •Вторая теорема подобия
- •Метод размерностей
- •Экспериментальное определение констант критериального уравнения
- •Третья теорема подобия
- •Моделирование и виды моделей
- •Процессы обработки пищи
- •Основные технические свойства пищевого сырья и продуктов
- •Процессы измельчения пищевых продуктов
- •Дробление
- •Резание
- •Резание пластинчатым ножом
- •Резание дисковым ножом
- •Процессы перемешивания пищевых продуктов
- •Перемешивание жидких и пластичных масс
- •Пенообразование и взбивание
- •Расчёт перемешивающих устройств
- •Процессы получения соков
- •Процессы обработки пищи сверхвысокочастотной энергией
- •Взаимодействие переменного электромагнитного поля с пищевыми продуктами
- •Свч печи
- •Параметры свч-нагрева
- •Оптимальная загрузка свч-печи
- •При доведении до температуры кулинарной готовности:
- •Тепловая обработка пищевых продуктов в свч-поле
- •Разогрев
- •Размораживание
- •(Масса 0,5 кг, мощность 2 кВт): 1 – судак; 2 – говядина тушеная; 3 – курица в белом соусе
- •Свч размораживатели
- •Свч сублиматоры
- •Процессы обработки пищевых продуктов и жидкостей
- •Выпечка
- •Уборочные процессы
- •Процессы удаления пыли и очистки изделий
- •Определение пыли.
- •Основные свойства пыли
- •Коагуляция пыли
- •Основные закономерности движения и осаждения пыли
- •Гравитационное осаждение
- •Осаждение под действием центробежной силы
- •Инерционное осаждение
- •Осаждение частиц пыли в электрическом поле
- •Фильтрация через пористые материалы
- •Мокрая очистка
- •Термофорез
- •Очистка изделий от пыли в быту
- •Механическая чистка изделий
- •Пневмомеханическая чистка изделий
- •Пневматическая чистка изделий
- •Процессы очистки газов, жидкостей и растворов
- •Процессы очистки газов
- •Процессы очистки жидкостей и растворов
- •Отстаивание и осаждение
- •Отстойное центрифугирование
- •Флотация
- •Фильтрование
- •Общая характеристика процесса
- •Гидравлическое сопротивление зернистого или пористого слоя при фильтровании
- •Фильтрование под действием перепада давлений
- •Фильтрование под действием центробежной силы
- •Ультрафильтрация и обратный осмос
- •Процессы кондиционирования помещений
- •И лучи тепловлажностных процессов
- •Процессы мойки бытовых изделий и посуды
- •Процессы облагораживания воздуха
- •Общие понятия о микроклимате
- •Вентилирование
- •Безразмерные характеристики различных типов вентиляторов
- •Электроотопление
- •Процессы химической чистки изделий
- •Обработка изделий струями жидкостей
- •Процессы обработки изделий из тканей
- •Процессы стирки
- •Моющий процесс при стирке
- •А) сферическая мицелла, б) пластинчатая мицелла
- •Динамика перемещения ткани во вращающемся барабане
- •Теория активаторного процесса стирки
- •Теория отжима белья
- •Процессы сушки изделий из тканей
- •Процессы фильтрации растворов
- •Теория фильтрования с образованием осадка
- •Теория фильтрования без образования осадка
- •Процессы влажно-тепловой обработки тканей
- •Процессы соединения тканей
- •Подача материалов в швейных машинах
- •Подача ниток в швейных машинах
- •Прокалывание материалов иглой
- •С материалом при прокалывании
- •Соединение ткани ниточным способом
- •Рабочие органы универсальной швейной машины
- •Процесс образования челночного стежка
- •Образование стежка на швейной машине с вращающимся челноком.
- •В зависимости от соотношения натяжения ветвей ниток
- •Процесс образования цепного (петельного) стежка
- •Образование однониточного цепного стежка на тамбурной машине с вращающимся петлителем.
- •(Римские цифры – положения отверстия)
- •Образование двухниточного петельного стежка на машине с колеблющимся крючком.
- •Расход мощности в процессе работы универсальной швейной машины
- •Процессы получения холода
- •Естественное и искусственное охлаждение
- •Влияние холода на пищевые продукты
- •Нахождения в замороженном состоянии :
- •Вспомогательные средства холодильного хранения продуктов
- •Термодинамические основы процессов трансформации тепла
- •Замораживание
- •Охлаждение
- •Домораживание
- •Способы получения низких температур
- •Расширение газов
- •Дросселирование
- •Эффект Пельтье и Ранка-Хильша
При доведении до температуры кулинарной готовности:
а – температурный режим; б – в СВЧ-печах с регулированием мощности;
в – в СВЧ-печах без регулирования мощности
На первом этапе рекомендуется выдерживать темп нагрева 0,4-1,0 K/c. Продолжительность второго этапа можно определить только опытным путем.
Тепловая обработка пищевых продуктов в свч-поле
В СВЧ-печах могут быть реализованы самые разнообразные тепловые режимы: разогрев, размораживание, приготовление, вспенивание, разрушение и др.
СВЧ-нагрев может быть использован в комбинации с другими видами воздействия. Процесс доведения продуктов до кулинарной готовности можно проводить в следующей комбинации: СВЧ-нагрев – горячий воздух или СВЧ- нагрев – водяной пар. Для колеровки продуктов (образования корочки) используют дополнительно инфракрасный нагрев. Жарку во фритюре можно осуществлять одновременно в разогретом жире (фритюре) и в СВЧ-поле. Для размораживания продуктов применяют комбинацию СВЧ-поля с ультразвуком [13].Рассмотрим теоретические модели процессов разогрева и размораживания продуктов в СВЧ-поле [11, 12].
Разогрев
Разогрев представляет собой нагревание продукта в диапазоне положительных температур до состояния кулинарной готовности или несколько ниже. Обычно разогрев ведут при постоянной полезной мощности СВЧ-печи. График изменения температуры от времени при разогреве (Рис. 42) имеет вид кривой, ограниченной температурой кулинарной готовности. Ограничение связано с интенсивной потерей теплоты при испарении воды в области температур, близких к температуре кипения.
Рис. 42. График разогрева продукта
Пусть
за время
в продукте под действием СВЧ-поля
генерируется
теплоты, а на испарение влаги расходуется
теплоты. Это приведет к изменению
температуры продукта:
где – удельная теплоемкость продукта; – масса продукта.
Теплоту можно представить как произведение полезной мощности печи из формулы на время нагрева:
Интенсивность испарения влаги возрастает с повышением температуры. Соответственно усиливается потеря теплоты образцом. Можно предположить, что эта функция имеет вид:
где
- параметр, зависящий от удельной
мощности внутреннего источника теплоты,
формы, размера и влажности образца,
условий теплоотвода;
- показатель нарастания интенсивности
испарения с повышением температуры
продукта.
С
учетом, что
, где
- плотность продукта, формулы - дают:
.
Приняв
, а
,
получим уравнение разогрева продукта
в СВЧ -печи:
В
уравнении величины
и
могут быть определены только для
конкретных условий разогрева при
постановке эксперимента. Авторы [11, 12]
приводят данные по нагреву брусочков
картофеля в СВЧ-поле на частоте 2450 МГц.
Решив дифференциальное уравнение и
приняв
при начальном условии
,
они получили функцию изменения
температуры во времени:
где
- предельная температура образца при
.
Сравнение данных эксперимента с формулой
дало
,
.
Из найденных значений получено
.
Значение
,
соответственно удельная мощность
источника теплоты
.
Аналитический расчет продолжительности разогрева осложнен изменением значений , и с ростом температуры и уменьшением влажности продукта вследствие испарения воды. Кроме того, приведенная модель не учитывает потери части выделяющейся теплоты на нагрев посуды и окружающего воздуха.