Скачиваний:
131
Добавлен:
04.03.2014
Размер:
246.78 Кб
Скачать

2.11. Формула Тейлора

Теорема 2.7. Если функция есть функция класса для некоторого открытого множества , то для любой точки найдется такая ее окрестность (содержащаяся в ), что приращение функции в этой окрестности представимо в виде:

(1)

Перед доказательством теоремы заметим следующее. Формула (1) называется формулой Тейлора для числовой функции векторного аргумента. Она вполне аналогична формуле Тейлора из одномерного анализа. При она дает обычную форму приращения дифференцируемой в точке функции:

(см. формулу (3) п. 2.5).

При имеем:

(2)

Эта формула (2) особенно важна при исследовании функций на экстремум.

Переходим к доказательству теоремы. Мы проведем его в два этапа: сначала мы дадим новый вывод формулы Тейлора в одномерном случае и получим эту формулу с остаточным членом в интегральной форме. Затем мы сведем вывод в векторном случае к полученному одномерному результату. Мы не сможем вполне строго и подробно доказать оценку остаточного члена в общем случае, так как для этого требуется более подробное рассмотрение высших производных.

Доказательство теоремы 2.7. 1) Вывод одномерной формулы Тейлора с остаточным членом в интегральной форме. В предположении, что функция дифференцируема на отрезке преобразуем интеграл

,

используя интегрирование по частям при :

(3)

Пусть функция дифференцируема на отрезке раз, причем -ая производная функции непрерывна на . Тогда, используя формулу (3), вычислим:

Итак, полагая и обозначая через последний интеграл в написанной выше цепочке выкладок, получим

(4) Это и есть искомый вид одномерной формулы Тейлора с остаточным членом в интегральной форме.

Для оценки остаточного члена воспользуемся обобщенной теоремой об оценке (это возможно ввиду непрерывности -ой производной!):

,

где - наименьшее (наибольшее) значение непрерывной функции на отрезке .

Но очевидно, что . Следовательно,

Это значит, что модуль остаточного члена имеет порядок , или . Таким образом, мы пришли к остаточному члену в форме Пеано.

Применяя же к интегралу обобщенную теорему о среднем, будем иметь:,

где ( - точка интервала ). Последнее выражение представляет собой, как известно, остаточный член в форме Коши.

Итак, для достаточно гладкой функции замена ее приращения суммой в (4) с отбрасыванием остаточного члена дает ошибку, которая есть бесконечно малая высшего порядка по сравнению с приращением аргумента, возведенного в «степень гладкости» функции.

2) Вывод формулы Тейлора для числовой функции векторного аргумента.

Фиксировав точку и вектор , рассмотрим приращение функции в окрестности точки в виде:

, где .

Поскольку и фиксированы, мы можем считать это приращение функцией вещественного аргумента . Обозначим и применим к функции только что выведенную формулу Тейлора (4), в которой :

, (5)

где .

Конечно, еще нужно вычислить производные функции , обосновав тем самым их существование. Прежде всего, заметим, что эта функция есть сложная функция вещественного переменного , так как она ( зависит от не непосредственно, а через вектор (геометрически любой такой вектор можно представить очень наглядно - это вектор, конец которого лежит на отрезке, соединяющем точки и (см. рис. 2.14).

a x a+h

Рис. 2.14

Тогда

т.е. первая производная функции равна первому дифференциалу функции в текущей точке .

Совершенно аналогично

Индукцией по легко доказать формулу:

Так как по условию , то функция имеет на отрезке все производные до -ой включительно, и последняя производная непрерывна на отрезке. Таким образом, разложение (5) корректно.

Кроме того, очевидно, что

Следовательно, поскольку , а , мы получаем:

, (6)

где .

В силу непрерывности -ого дифференциала остаточный член можно оценить, используя обобщенную теорему о среднем:

, (7)

где .

Модули первых двух дифференциалов оценить легко:

,

(при оценке второго дифференциала мы использовали неравенство Коши-Буняковского!).

Можно доказать (это доказательство не приводится), что и в общем случае имеет место оценка:

(интуитивно это понятно из записи степенной формы для дифференциала высшего порядка - см. п. 2.10).

Итак, для остаточного члена (7) можно записать

,

а формулу (6) - переписать в виде:

Мы получили формулу (1) и тем самым полностью доказали теорему 2.7.

Соседние файлы в папке FNP