
- •Часть I
- •Раздел 2.
- •Основные формулы
- •Термический кпд кругового цикла
- •Термический кпд цикла Карно
- •К началу
- •К началу
- •Раздел 1. Элементы молекулярно-кинетической
- •Раздел 2. Кинетическая энергия молекул газа
- •Раздел 3. Теплоемкость газа
- •Раздел 4. Первое начало термодинамики.
- •Раздел 5. Второе начало термодинамики. Цикл Карно
- •Раздел 6. Энтропия
- •Раздел 7. Явления переноса
- •Раздел 8. Капиллярные явления
К началу
Примеры решения задач
Пример 1. В цилиндр длиной l0 = 2 м, заполненный воздухом при нормальном давлении р =1105 Па, начали медленно вдвигать поршень площадью S = 100 см2. Определить давление p1 в цилиндре и силу F, которая будет действовать на поршень, если поршень остановится на расстоянии l1 = 2 см от дна цилиндра. (Вес поршня не учитывать).
Дано:
l0 =2 м р0 = 1105 Па S = 100 см2 l1 = 2 см |
В единицах СИ:
S = 110-2 м2 l1 = 2 10-2 м |
Решение. 1. Если поршень вдвигать медленно, воздух практически не нагревается, и процесс можно считать изотермическим (T = const). Уравнение такого процесса имеет вид: p0V0 = p1V1, где р0 = 105 Па – начальное давление, V0 = l0S – начальный объем газа, р1 – конечное давление, а V1 = l1 S – конечный объем газа. Из этого уравнения следует, что: |
Найти: р1, F |
|
(28)
2. Силу, действующую на поршень, найдем из выражения для давления:
откуда
.
Произведем вычисления:
Ответ.
;
F = 1105
Н.
Пример
2.
Под каким давлением находится кислород
(
кг/моль) в баллоне объемом V
= 10 л и чему равна суммарная кинетическая
энергия всех его молекул при условии,
что концентрация и средняя квадратичная
скорость молекул кислорода составляют,
соответственно,
и
=
103
м/с.
7 8
Дано:
V = 10 л п = 21025 м-3
NА = 6,02 · 1023 моль-1 R = 8,31 Дж/(мольК) |
В единицах СИ:
V = 110-2 м3
|
Решение.
1. Для нахождения
давления газа p
воспользуемся уравнением
Клапейрона–Менделеева
Массу газа можно выразить через известные величины следующим образом: |
Найти: p, Е. |
|
m
= Nm0где
N
= nV
число молекул
газа; n
- концентрация газа; V
- объем газ;
-
масса одной молекулы кислорода,
- молярная масса газа; NA
- число Авогадро.
Таким образом:
,
.
(30)
Температуру газа
можно определить исходя из выражения
для средней квадратичной скорости
молекул
.
Находим:
(31)
Подставляя полученные выражения (30) и (31) в (29), окончательно получим:
(32)
2. Суммарная кинетическая энергия всех молекул газа есть ни что иное, как внутренняя энергия газа
(33)
где i = 5 – число степеней свободы для двухатомных молекул газа.
Подставив в (33) полученное выше выражение (32) для давления p, получим
(34)
Произведем вычисления по формулам (4) и (6):
;
.
Ответ. Газ находится по давлением p = 3,54105 Па, а его суммарная кинетическая энергия составляет Eк = 8,86103 Дж.
Пример 3. Двухатомный газ под давлением р = 150 кПа и при температуре t° = 27°С занимает объем V = 100 л. Определить теплоемкость этого газа при постоянном объеме сV и при постоянном давлении ср.
Дано:
i = 5 р = 150 кПа t° = 27°С V = 100 л |
В единицах СИ
р = 1,5 · 105 Па Т =300 К V = 0,1 м3 |
Решение.
Теплоемкости произвольной массы газа
m при постоянном
объеме сV и
при постоянном давлении ср
могут быть выражены через молярные
теплоемкости, соответственно, при
постоянном объеме
|
Найти: cV, ср |
|
(35)
,
(36)
где m - масса газа, μ – молярная масса газа, i = 5 – число степеней свободы для молекул двухатомного газа, R = 8,31 Дж/(мольК) - универсальная газовая постоянная.
Из уравнения Клапейрона-Менделеева
(37)
н
9 10
Следовательно, уравнения (35) и (36) принимают
вид:
(38)
(39)
Произведем вычисления по формулам (38) и (39):
П
Рис. 2.1.
Дано:
V1 = 3 л V2 = V = 6 л p1 = р0 = 1105 Па = 2103 кг/моль р2 = 2р1 |
В единицах СИ:
V1 = 610-3 м3 V2 = 310-3 м3
|
Решение. На первом этапе газ расширяется от V1 до V2 при постоянном давлении р0, т. е. протекает изобарический процесс, а затем газ нагревается при постоянном объеме, то есть идет изохорический процесс. Представим эти процессы на pV-диаграмме и VT-диаграмме.
|
Найти: Q |
|
1. На pV-диаграмме (рис.2.2) показано, что переход из состояния 1 в состояние 2 происходит при постоянном давлении р0 (изобарический процесс), а переход из состояния 2 в состояние 3 – при постоянном объеме V2 (изохорический процесс). На VT-диаграмме (рис. 2.3) эти же переходы представлены зависимостями V/T = const (12) и V = const (23). T1, T2 и T3 - температуры газа в состояниях 1, 2 и 3, соответственно.
2. Суммарное количество теплоты, Qp переданное газу, найдем как сумму количеств теплоты, переданных при изобарическом и изохорическом QV процессах.
(40)
где i = 5 – число степеней свободы для двухатомной молекулы Н2; т – масса газа; μ - молярная масса водорода Н2; R = 8,31 Дж/(мольК)– газовая постоянная.
p1 3
p0 1 2
V1 V2 V |
2 3 V2 1 V1
T1 T2 T3 T |
Рис. 2.2 |
Рис. 2.3 |
Воспользовавшись
уравнением Клапейрона-Менделеева
полученное выражение (40) для Q
можно представить в виде:
(41)
Произведем вычисления по формуле (41):
Дж
Ответ. Суммарное количество теплоты, переданное газу, Q = 2,55 кДж.
Пример 5. Трехатомный (i = 6) газ совершает цикл Карно (см. рис. 2.4). Объем газа в точке В составляет 6 м3. Определить объем газа в точке С, если КПД цикла равен 22%.
Дано:
i=6 VВ = 6 м3
|
в единицах СИ
|
B
D C V
Рис.2.4 |
Найти: VС |
|
11 12
Решение: Так как переход из точки В в точку С газ совершает адиабатически, то воспользуемся уравнением для этого процесса (уравнение Пуассона) в виде:
,
(1)
где Т1 – температура газа в точке В, Т2 – температура
газа в точке С, V1 = VВ – объем газа в точке В,
V2 = VС
– объем газа в точке С,
- показатель адиабаты.
Так как
для трехатомного газа, представим
уравнение (1) в виде:
(2)
Отношение
находим из формулы для КПД цикла Карно:
.
(3)
Подставляя полученное выражение (3) в (2), окончательно находим:
(4)
Произведем вычисления по формуле (4):
м3
Ответ: Объем газа в точке С составляет 12,6 м3.
Пример 6. Найти изменение энтропии при охлаждении азота массой m = 10 г от 80 0С до 0 0С
а) при постоянном объеме
б) при постоянном давлении.
Дано: N2 = 2810-3 кг/моль m = 10 г
R =8,31 Дж/(мольК) а) V = const б) p = const |
в единицах СИ
m = 110-2 кг Т1 = 353 К Т2 = 273 К |
Решение: Изменение энтропии будем искать по формуле:
где dQ – малое изменение теплоты при температуре Т. При изохорном процессе
|
Найти:
|
|
При изобарном процессе
(3)
Подставляя полученные соотношения (2) и (3) в выражение (1) для изменения энтропии, получим:
а) для изохорного процесса
(4)
б) для изобарного процесса
(5)
Произведем вычисления по формулам (4) и (5):
13 14
Дж/К.
Знак (-) означает, что энтропия газа при уменьшении его температуры уменьшилась.
Ответ: Энтропия газа уменьшится при уменьшении температуры на 1,93 Дж/К при изохорном процессе и на 2,7 Дж/К при изобарном процессе.
Пример
7. Наружная
поверхность неоштукатуренной кирпичной
стены толщиной
х
=50 см (два
кирпича) имеет температуру -10 0С,
внутренняя +20 0С.
За сутки через 1 м2
стены за счет теплопроводности теряется
количество тепла Q
= 3,6
106
Дж. Определить коэффициент теплопроводности
кирпичной кладки.
Дано:
S = 1 м2 t = 24 ч
Q
= 3,6
|
в единицах СИ
Т1 = 263 К Т2 = 293 К
t = 8,64104 с |
Решение: Считая стену бесконечной, температуры Т1 и Т2 постоянными, процесс теплопроводности установившимся, уравнение теплопроводности можно записать в виде:
Q
= æ
где Q
– количество теплоты прошедшей через
стену толщиной
через площадь S за время t, æ – коэффициент теплопроводности.
|
|
|
Найти: æ |
|
Из уравнения (1) находим коэффициент теплопроводности:
æ
=
Произведем вычисления:
æ
=
.
Ответ: Коэффициент
теплопроводности æ
=
.
Пример 8. Горизонтально расположенный капилляр с внутренним радиусом
R
=1мм и длиной
l
= 10 см полностью
заполнен водой. Когда капилляр поставили
вертикально, опустив нижний конец в
воду на пренебрежимо малую глубину,
часть воды вытекла. Определить массу
вытекшей воды. Плотность воды
= 1103
кг/м3,
коэффициент поверхностного натяжения
= 72
10-3
Н/м.
Дано:
R = 1 мм l = 10 см = 1103 кг/м3
|
в единицах СИ R = 110-3 м l = 110-1 м |
Решение: Масса
воды, полностью заполняющей капилляр,
равна
где - плотность воды, l – длина капилляра, R – радиус капилляра. Когда капилляр поставлен вертикально, причем нижний конец находится в воде, высота уровня воды будет |
Найти:
|
|
|
где
- коэффициент поверхностного натяжения,
= 0 - краевой угол при полном смачивании - плотность воды,
g = 9,8 м/с2 - ускорение свободного падения.
Тогда масса воды, оставшейся в капилляре, будет равна:
m
= V
= hS
=,
или, так как cos
= 1, m =
(2)
Следовательно,
(3)
П
15 16
кг.
Ответ: Масса вытекшей из капилляра воды равна 0,268 г.