Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МАТЕМАТИКА МУ КР №2.doc
Скачиваний:
7
Добавлен:
06.05.2019
Размер:
1.3 Mб
Скачать
    1. 1.3 Градиент. Производная по направлению

Скалярным полем называется плоская или пространственная область, с каждой точкой которой связано определенное значение некоторой физической величины . Задание поля скалярной величины равносильно заданию скалярной (числовой) функции .

Линией уровня скалярного поля называется совокупность точек плоскости, в которых функция этого поля имеет одинаковые значения ( , где ).

Градиентом функции называется вектор

= .

Направление вектора в каждой точке совпадает с направлением нормали к поверхности (линии) уровня, проходящей через эту точку.

Производная функции в точке в направлении вектора , образующего с осями координат углы и , вычисляется по формуле

Задача 3. Найти градиент и производную функции в точке М(3,4) в направлении вектора l, составляющего угол с положительным направлением оси Ох.

Решение. Найдем частные производные функции в точке М:

.

Тогда градиент будет равен: .

Найдем направляющие косинусы: . Тогда производная по направлению будет равна

Тема 2 Неопределенный интеграл

Функция называется первообразной функции если Множество первообразных функции называется неопределенным интегралом и обозначается .

Операции дифференцирования и интегрирования взаимнообратны:

,

поэтому нетрудно получить следующую таблицу интегралов:

1) ( ), 7) ,

2) , 8) ,

3) , 9) ,

4) , 10) ,

5) , 11) ,

6) , 12) .

Не останавливаясь на непосредственном интегрировании по формулам, как на простейшем способе решения примеров, перейдём сразу к более сложным методам.

2.1 Метод замены переменного

Пусть требуется найти неопределенный интеграл от непрерывной функции

Рассмотрим некоторую функцию , которая имеет непрерывную производную и обратную функцию . (Например: монотонна). Тогда справедлива формула:

. (2.1)

В некоторых ситуациях удается подобрать функцию так, что интеграл в правой части (1.1) оказывается проще, чем в левой части. Такой прием называется методом замены переменной. На практике часто формулу используют в обратную сторону:

. (2.2)

Другими словами, если подынтегральное выражение может быть записано в форме левой части (2.2), то с помощью подстановки получаем более простой интеграл (2.1).

Задача 1. .

Решение.

.

Задача 2. .

На практике часто используется следующая простая формула:

,

где - первообразная функции .

2.2 Интегрирование по частям

Формула интегрирования получается почленным интегрированием формулы производной произведения.

.

Смысл формулы заключается в том, что производная перебрасывается с одного множителя не другой и интеграл при этом может оказаться проще, чем исходный.

Можно выделить по крайней мере два класса интегралов, для которых применима формула интегрирования по частям.

I.

где - многочлен степени . В качестве нужно взять , а = - другой сомножитель.

При этом формулу приходится применить столько раз, какова степень многочлена.

II. .

В этом случае, наоборот, следует положить = .

Рассмотрим применение указанной схемы.

Задача 3.

.

Это интеграл первого типа, поэтому:

= =

= =

Задача 4. .

Это интеграл второго типа, поэтому имеем:

.

Заметим, что при использовании формулы интегрирования по частям приходится восстанавливать функцию по ее дифференциалу . Поэтому в качестве этого сомножителя нужно брать легко интегрируемую функцию.

Формула интегрирования по частям может хорошо сработать и в других случаях.

Задача 5. .

.

Получили уравнение относительного исходного интеграла I. Вынося I за скобки, получим

,

откуда

.