
- •Тема 1 наука и ее роль в жизни общества проблема определения науки
- •Соотношение науки, философии и религии
- •Структура науки и ее функции
- •Критерии научности знания
- •Тема 2 научная теория. Структура и основания теории
- •Теория как форма научного знания. Теория и научные программы
- •Структура научной теории
- •Гносеологические предпосылки науки
- •Классификация научных теорий
- •Научные понятия и способ их образования
- •Введение и исключение научных абстракций
- •Тема 3 методы научного познания. Развитие научного знания
- •Методы научного познания
- •Законы науки
- •Развитие научного знания
- •Специфика научных революций
- •Тема 4 возникновение науки. Появление первых научных программ проблема начала науки
- •Научные знания на древнем востоке
- •Начало науки. Античная наука
- •Первые научные программы античности
- •Тема 5 формирование основ естествознания в эпоху средневековья и возрождения
- •Основные черты средневекового мировоззрения
- •Наука и научное познание в средние века
- •Революция в мировоззрении в эпоху возрождения
- •Тема 6 научная революция XVI-xvh вв. И становление классической науки
- •Галилей и его роль в возникновении современной науки
- •Основные аспекты научной революции
- •Исаак ньютон и завершение научной революции
- •Тема 7 специфика и природа современной науки
- •Особенности классической науки
- •Наука XIX века
- •Новейшая революция в науке
- •Основные черты современной науки
- •Кризис современной науки. Постнеклассическая наука
- •Тема 8 физическая картина мира
- •Механическая картина мира
- •Электромагнитная картина мира
- •Становление современной физической картины мира
- •Тема 9 структурные уровни организации материи структурность и системность материи
- •Поле и вещество
- •Классификация элементарных частиц
- •Тема 10 физическое взаимодействие проблемы учения о взаимодействии и движении
- •Общая характеристика физических взаимодействий
- •Гравитационное взаимодействие
- •Электромагнитное взаимодействие
- •Слабое взаимодействие
- •Сильное взаимодействие
- •Теории большого объединения и суперобъединения
- •Тема 11 концепции пространства и времени в современном естествознании
- •Развитие представлений о пространстве и времени
- •Теория относительности
- •Единство и многообразие свойств пространства и времени
- •Тема 12 детерминизм и причинность в современной физике. Динамические и статистические законы
- •Динамические законы и теории и механический, детерминизм
- •Статистические законы и теории и вероятностный детерминизм
- •Соотношение динамических и статистических законов
- •Тема 13 принципы современной физики
- •Принцип симметрии и законы сохранения
- •Принцип соответствия
- •Принцип дополнительности и соотношение неопределенностей
- •Принцип суперпозиции
- •Основы термодинамики
- •Тема 14 космологические модели вселенной что такое космология?
- •Начало научной космологии
- •Космологические парадоксы
- •Неевклидовы геометрии
- •Модель расширяющейся вселенной
- •Некоторые трудности гипотезы расширяющейся вселенной
- •Тема 15 эволюция вселенной рождение вселенной
- •Ранний этап эволюции вселенной
- •Структурная самоорганизация вселенной
- •Образование солнечной системы
- •Тема 16 проблемы самоорганизации материи формирование идеи самоорганизации
- •Понятие самоорганизации
- •Основы синергетики
- •Неравновесная термодинамика и. Пригожина
- •Тема 17 становление и развитие химической картины мира возникновение химии
- •Алхимия
- •Арабская алхимия
- •Западноевропейская алхимия
- •Период зарождения научной химии
- •Теория флогистона
- •Закон сохранения массы лавуазье
- •Открытие основных законов химии
- •Химия как наука
- •Тема 18 современные концепции химии структура химии
- •Взаимосвязь химии с физикой
- •Проблема химического элемента
- •Концепции структуры химических соединений
- •Учение о химических процессах
- •Эволюционная химия
- •Взаимосвязь химии с биологией
- •Тема 19 происхождение и сущность жизни история проблемы
- •Концепция происхождения жизни а.И. Опарина
- •Современные концепции происхождения и сущности жизни
- •Сущность и определение жизни
- •Появление жизни на земле
- •Формирование биосферы земли
- •Тема 20 эволюция органического мира
- •Становление идеи развития в биологии
- •Концепция развития ж.-б.Ламарка
- •Теория катастроф ж. Кювье
- •Эволюционная теория ч.Дарвина
- •Антидарвинизм конца XIX-начала XX века
- •Тема 21 современные теории эволюции
- •Основы генетики
- •Синтетическая теория эволюции (стэ)
- •Тема 22 человек как предмет естествознания
- •Происхождение человека
- •Сущность человека
- •Телесность и здоровье человека
- •Тема 23 человек, биосфера и космос
- •Человек и космос
- •Космизация современной науки и философии
- •Антропный принцип
- •Тема 24 на пути к ноосфере
- •Современные концепции экологии
- •Концепция ноосферы и устойчивого развития
Принцип дополнительности и соотношение неопределенностей
Еще один физический принцип - принцип дополнительности - возник из попыток осознать причину появления противоречивых наглядных образов, которые приходится связывать с объектами микромира.
В ряде экспериментов электрон и другие элементарные частицы обнаруживают корпускулярные свойства, то есть свойства частиц. Любое устройство для детектирования микрообъектов всегда регистрирует их как нечто целое, локализованное в очень малой области пространства.
С другой стороны, при движении все микрочастицы обнаруживают типичные волновые свойства. Наблюдается интерференция (наложение волн друг на друга) и дифракция (огибание волнами препятствий) частиц на кристаллических решетках или искусственно созданных препятствиях. Электрон и другие частицы ведут себя подобно волнам, огибающим препятствия, и как бы одновременно проходят через несколько щелей дифракционной решетки.
Таким образом, всем микрообъектам присущ корпускулярно-волновой дуализм. Общий ответ на вопрос о том, каким же образом совмещаются эти противоречивые свойства у одного объекта, был дан Н. Бором.
Прежде всего, подчеркивает Бор, нужно ясно осознать, что все приборы, регистрирующие индивидуальные акты в микромире, являются макроскопическими и иными быть не могут. Наши органы чувств не воспринимают микропроцессов. Сам человек - существо макроскопическое. Отсюда следует, что понятия, которыми мы пользуемся для описания явлений, -это макроскопические понятия, в терминах которых описывается работа приборов. Но эти понятия не могут быть полностью применены к микрообъектам, так как их поведение не подчиняется законам классической механики.
Согласно принципу дополнительности Бора, для полного описания квантово-механических явлений необходимо применять два взаимоисключающих (дополнительных) набора классических понятий (частиц и волн). Только совокупность таких понятий дает исчерпывающую информацию об этих явлениях как о целостных.
Принцип дополнительности является результатом философского осмысления новой необычной физической теории -квантовой механики. Он выражает на макроскопическом уровне один из основных законов диалектики - закон единства противоположностей.
Частным выражением принципа дополнительности является соотношение неопределенностей Гейзенберга.
Говоря о частице, мы представляем себе комочек вещества, находящийся в данный момент в определенном месте, обладающий определенной энергией и движущийся со строго определенной скоростью. При этом мы допускаем, что можно абсолютно точно знать координаты, импульс и энергию частицы в любой момент времени.
Однако, связывая частицу с волной, мы переходим к образу неограниченной синусоиды, простирающейся во всем пространстве. И понятия «длина волны в данной точке», «импульс в данной точке» просто не могут иметь смысла. Также не имеет смысла понятие энергии частицы в данный момент времени. Дело в том, что согласно формуле Планка, энергия связана с частотой волны, которая характеризует происходящий во времени гармонический колебательный процесс. Утверждение, что электрон лишь приближенно может рассматриваться как материальная точка, означает, что его координаты, импульс и энергия могут быть заданы лишь приблизительно. Количественно это выражается соотношением неопределенностей Гейзенберга.
Согласно этому соотношению, чем точнее фиксирован импульс, тем большая неопределенность будет в значении координаты. Также соотносятся энергия и время. Точность измерения энергии обратно пропорциональна длительности процесса измерения. Причина этого во взаимодействии прибора с объектом измерения.
Принцип неопределенности показывает, почему невозможно «падение» электрона на ядро атома. Ядро атома имеет очень малые размеры и при «падении» электрона местоположение последнего оказывается весьма точно определенным. Следовательно, резко увеличивается неопределенность в скорости электрона, разброс в значении скоростей станет весьма большим. В этот разброс будут включаться столь большие скорости, что электрон скорее покинет атом, чем упадет на ядро.