
- •Содержание
- •1 Начальные сведения об операционных системах
- •1.1 Назначение и функции операционных систем
- •1.2 История развития операционных систем
- •1.3 Классификация операционных систем
- •1.4 Обзор аппаратного обеспечения компьютера
- •1.5 Архитектура операционной системы
- •1.5.1 Классическая архитектура
- •1.5.2 Микроядерная архитектура
- •2 Процессы и потоки
- •2.1 Процессы
- •2.2 Потоки
- •2.3 Межпроцессное взаимодействие
- •2.3.1 Взаимное исключение с активным ожиданием
- •2.3.2 Примитивы межпроцессного взаимодействия
- •2.4 Планирование
- •2.4.1 Планирование в системах пакетной обработки данных
- •2.4.2 Планирование в интерактивных системах
- •2.4.3 Планирование в системах реального времени
- •2.5 Понятие взаимоблокировки
- •3 Управление памятью
- •3.1 Основы управления памятью
- •3.2 Методы распределения памяти без использования подкачки
- •3.2.1 Метод распределения с фиксированными разделами
- •3.2.2 Метод распределения с динамическими разделами
- •3.2.3 Метод распределения с перемещаемыми разделами
- •3.3 Методы распределения памяти с подкачкой на жесткий диск
- •3.3.1 Страничная организация памяти
- •3.3.2 Сегментная организация памяти
- •3.3.3 Сегментно-страничная организация памяти
- •3.4 Кэширование данных
- •4 Аппаратная поддержка мультипрограммирования на примере процессора Pentium
- •4.1 Регистры
- •4.2 Привилегированные команды
- •4.3 Сегментация с использованием страниц
- •4.4 Защита данных в процессоре Pentium
- •4.5 Средства вызова процедур и задач
- •4.6 Механизм прерываний
- •4.7 Кэширование в процессоре Pentium
- •5 Ввод-вывод
- •5.1 Принципы аппаратуры ввода-вывода
- •5.2 Принципы программного обеспечения ввода-вывода
- •6 Файловые системы
- •6.1 Основы файловых систем
- •6.2 Файловая система fat
- •6.3 Файловая система ntfs
- •6.4 Файловые системы Ext2, Ext3 и ufs
- •7 Безопасность операционных систем
- •7.1 Основы безопасности
- •7.2 Аутентификация пользователей
- •7.3 Атаки изнутри операционной системы
- •7.4 Атаки операционной системы снаружи
- •8 Обзор современных операционных систем
- •8.1 Операционная система Windows 2000
- •8.1.1 Структура Windows 2000
- •8.1.2 Реализация интерфейса Win32
- •8.1.3 Эмуляция ms-dos
- •8.2 Архитектура unix-образных операционных систем
- •8.3 Мультипроцессоры и мультипроцессорные операционные системы
- •8.4 Операционные системы реального времени и мобильные операционные системы
- •8.4.1 Операционная система Windows ce 5.0
- •Список использованных источников
4.7 Кэширование в процессоре Pentium
В процессоре Pentium кэширование используется в следующих случаях [11].
Кэширование дескрипторов сегментов в скрытых регистрах. Для каждого сегментного регистра в процессоре имеется так называемый скрытый регистр дескриптора. В скрытый регистр при загрузке сегментного регистра помещается информация из дескриптора, на который указывает данный сегментный регистр. Информация из дескриптора сегмента используется для преобразования виртуального адреса в физический при чисто сегментной организации памяти либо для получения линейного виртуального адреса при страничном механизме. Доступ к скрытому регистру выполняется быстрее, чем поиск и извлечение информации из таблицы страниц, находящейся в оперативной памяти. Поэтому если очередное обращение будет относиться к одному из сегментов, дескриптор которого еще хранится в скрытом регистре (а вероятность этого велика), то преобразование адресов будет выполнено быстрее. Тем самым скрытые регистры играют роль кэша таблицы дескрипторов и ускоряют работу процессора.
Кэширование пар номеров виртуальных и физических страниц в буфере ассоциативной трансляции TLB (Translation Lookaside Buffer) позволяет ускорять преобразование виртуальных адресов в физические при сегментно-страничной организации памяти. TLB представляет собой ассоциативную память небольшого объема, предназначенную для хранения интенсивно используемых дескрипторов страниц. В процессоре Pentium имеются отдельные TLB для инструкций и данных.
Кэширование данных и инструкций в кэш-памяти первого уровня. Эта память, называемая также внутренней кэш-памятью, поскольку она размещена непосредственно на кристалле микропроцессора, имеет объем 16/32 Кбайт. В процессоре Pentium кэш первого уровня разделен на память для хранения данных и память для хранения инструкций. Согласование данных выполняется только методом сквозной записи.
Кэширование данных и инструкций в кэш-памяти второго уровня. Эта память называется также внешней кэш-памятью, поскольку она устанавливается в виде отдельной микросхемы на системной плате. Кэш-память второго уровня является общей для данных и инструкций и имеет объем 256/512 Кбайт. Поиск в кэше второго уровня выполняется в случае, когда констатируется промах в кэше первого уровня. Для согласования данных в кэше второго уровня может использоваться как сквозная, так и обратная запись.
Контрольные вопросы по разделу
1 Значения каких системных регистров процессора должен использовать программный модуль операционной системы, чтобы произвести обращение к индивидуальной части памяти текущего процесса?
2 Представьте, что для задач всех уровней привилегий используется один общий стек. К каким последствиям это может привести?
3 Почему в сегменте состояния задачи TSS хранятся значения селекторов стека для уровней привилегий 0, 1 и 2, но нет значения для селектора уровня 3?
4 В какой памяти – физической или виртуальной – задает положение сегмента при выключенном страничном механизме базовый адрес, хранимый в дескрипторе сегмента?
5 Зачем нужны шлюзы вызовов процедур и задач, если существует возможность непосредственного вызова?
6 Чем отличаются маскируемые и немаскируемые прерывания?
7 Перечислите переменные, характеризующие уровни привилегий в процессоре Pentium.
8 Зачем в процессоре Pentium используется двухуровневая структура страниц?