
- •Список литературы
- •Список литературы
- •Колебательной системы
- •Активной массы от соотношения частот при различных величинах затухания в горизонтальном направлении системы
- •Активной массы от соотношения частот при различных величинах затухания в вертикальном направлении системы
- •Список литературы
- •Параметры маятниковой схемы стенда
- •Список литературы
- •Список литературы
- •Дискового зубчатого бункерного загрузочного устройства с кольцевым ориентатором
- •С неярко выраженной асимметрией торцов и смещения центра масс вдоль продольной оси симметрии на дне бункера бзу
- •Захватывающих органов дискового зубчатого бункерного загрузочного устройства
Колебательной системы
На рис. 2 обозначены:
1.
– соответственно жесткости амортизаторов
12, 13 (см. рис. 1) и упругой системы
горизонтального привода. Коэффициенты
неупругого сопротивления амортизаторов
и упругой системы между активной и
реактивной части системы горизонтального
привод -
.
2.
– соответственно, жесткости амортизаторов
12, 13 (см. рис. 1) и упругой системы между
активной и реактивной частями
вертикального привода. Коэффициенты
неупругого сопротивления амортизаторов
и упругой системы между активной и
реактивной частями системы вертикального
привода -
.
3.
– амплитуды возмущающего момента
горизонтальных колебаний и силы
вертикальных колебаний, соответственно.
Принимая для
системы горизонтальных колебаний в
качестве обобщенных координат
и
угловые перемещения инерционных
элементов
и
,
записывая выражения кинетической и
потенциальной энергии, а также функции
диссипации, дифференцируя их, и подставляя
в уравнение Лагранжа 2-го рода, получим
следующие дифференциальные уравнения
движения систем
(1)
где
– угловая
частота возбуждения колебаний.
При наличии в линейных дифференциальных уравнениях членов с четными и нечетными производными решения следует искать через синусоидальные и косинусоидальные компоненты, иными словами, с двумя неизвестными компонентами (или через амплитудную величину и фазу перемещения)
(2)
Получим систему алгебраических уравнений, из которой согласно [1] определитель системы раскрывается как сумма квадратов действительной и мнимой частей
(3)
(4)
Величины амплитуд колебаний масс и фазовых сдвигов по отношению к возмущающему моменту в соответствии с работой [1] определяются по следующим формулам:
(5)
(6)
.
(7)
Из (4) мы разделим
,
на
и обозначив
;
(8)
Имеем
Пренебрегая
вследствие малости произведением
и обозначая
;
(9)
имеем
(10)
Из (10), (5), (6), (7) перепишем
(11)
(12)
Используя (11), (12) и задавая примерные параметры системы строим графики зависимостей амплитуды и угла сдвига фаз активной массы от соотношения частот на рис. 3.
Аналогично, для вертикальных колебаний, применяя тот же метод [1] получаем выражения амплитуд
(13)
и угла сдвига фаз
(14)
Мы считаем жесткость механической конструкции (рычаги 10, 14; вал 11, см. рис. 1) бесконечной, поэтому вертикальная суммарная жест-
кость
где с9 - жесткость центральной пружины 9.
а б
Рис. 3. Графики зависимости амплитуды (а) и угла сдвига фаз (б)
Активной массы от соотношения частот при различных величинах затухания в горизонтальном направлении системы
;
Используя (13) и (14) и также задавая примерные параметры системы строим графики, выражающие зависимость амплитуды и угла сдвига фаз активной массы от соотношения частот (рис. 4).
а б
Рис. 4. Графики зависимости амплитуды (а) и угла сдвига фаз (б)