
- •Физика полупроводников
- •Глава 1. Физические модели полупроводников 22
- •Введение
- •В.1. Основные этапы развития физики полупроводников.
- •1) Дискретная электроника на электровакуумных приборах.
- •«Закон Мура» скоро умрет?
- •В.3. Классификация веществ по удельной электрической проводимости. Основные представления о свойствах полупроводников.
- •Глава 1. Физические модели полупроводников
- •1.1. Модельные представления о структуре твердых тел
- •1.1.1. Агрегатные состояния вещества (конспективно)
- •1) Газообразное вещество
- •2) Жидкое состояние
- •3) Твердые тела (вещества)
- •4) Особые состояния вещества:
- •1.1.2. Типы связей в кристаллах (конспективно)
- •1. Ионная связь ( рис. 1.1) :
- •2. Металлическая связь.
- •3. Связь Ван-дер-Вальса
- •4. Ковалентная связь.
- •1.1.3. Кристаллические решетки. Операции симметрии.
- •1.1.4. Положение и ориентация плоскостей и направлений в кристалле
- •1.1.5. Обратная решетка
- •1.1.6. Примеры кристаллических структур материалов электроники
- •1.1.7. Тепловые колебания атомов решетки
- •1.1.8. Дефекты кристаллического строения
- •Линейные дефекты (дислокации, стержнеобразные дефекты и др.);
- •Поликристаллические и аморфные материалы
- •1.1.9. Жидкие кристаллы
- •1.1.10. Фазовые диаграммы и твердые растворы
- •1.1.11. Выращивание кристаллов кремния
- •Получение металлургического кремния.
- •Получение трихлорсилана
- •Осаждение из парогазовой смеси поликрист. Кремния.
- •1.2. Модели электропроводности полупроводников
- •1.2.1. Электропроводность собственного полупроводника в рамках модели ковалентной связи
- •1.2.2. Электропроводность примесных полупроводников в рамках модели ковалентной связи
- •1.2.3. Элементарная теория электропроводности полупроводников
1.2.2. Электропроводность примесных полупроводников в рамках модели ковалентной связи
Рассмотрим теперь механизм электропроводности полупроводника с решеткой типа алмаза, в котором один из атомов замещен атомом элемента V группы, например мышьяка в решетке кремния. Полупроводник, имеющий примеси, называют примесным, а его электропроводность, обусловленную наличием в кристалле примеси, — примесной. У атома мышьяка пять валентных электронов. В решетке кремния четыре валентных электрона атома мышьяка вместе с четырьмя электронами ближайших атомов кремния участвуют в образовании ковалентной связи, как это схематически представлено на рис. 1.35, а. Пятый электрон мышьяка, не принимающий участие в образовании ковалентной связи, слабо связан с атомом мышьяка, так как он находится в электрическом поле электронов окружающих атомов кремния. При низких температурах пятый электрон локализован около атома мышьяка, но при повышенных температурах он может быть отщеплен от примеси и будет свободно перемещаться по кристаллу. В этом случае также соблюдается электронейтральность кристалла, так как атом мышьяка, отдавший пятый электрон, будет теперь положительным ионом.
|
Рис. 1.35. Образование (генерация) свободных носителей заряда – электронов и дырок – в легированном (примесном) полупроводнике.
|
Наряду с ионизацией примеси может происходить и ионизация атомов основного вещества. Но в области температур ниже той, при которой имеет место значительная собственная электропроводность, количество электронов, оторванных от примеси, будет значительно больше количества электронов и дырок, образовавшихся в результате разрыва ковалентных связей. В силу этого доминирующую роль в проводимости полупроводника будут играть электроны, поэтому их будем называть основными носителями заряда, а дырки — неосновными носителями заряда. Такой полупроводник называют электронным или п-типа, а примесь, дающую электроны, донорной или примесью п-типа.
Допустим, что в качестве примеси в кристаллическую решетку полупроводника с ковалентной связью внесены атомы элемента третьей группы периодической системы Менделеева, например алюминий в решетке кремния. Поскольку высшая валентность алюминия равна трем, то одна связь атома кремния будет не завершена (рис. 1.35, б).
В незаполненную связь около атома алюминия в результате теплового возбуждения может перейти электрон от соседнего атома кремния. При этом образуются отрицательный ион алюминия и свободная дырка, перемещающаяся по связям кремния и, следовательно, принимающая участие в проводимости полупроводника. Примеси, захватывающие электроны, называют акцепторными. Для образования свободной дырки за счет перехода электрона от атома кремния к атому акцепторной примеси требуется значительно меньше энергии, чем для разрыва ковалентной связи кремния. В силу этого количество дырок значительно больше Количества свободных электронов и поэтому в таком полупроводнике основными носителями заряда будут дырки, а электроны — неосновными носителями заряда. Полупроводник с акцепторной примесью носит название дырочного или р-типа.