- •Часть 1
- •Оглавление
- •1.12. Ряды динамики 158
- •1.13. Изучение структуры социально-экономических явлений 182
- •1.14. Статистические индексы 191
- •Предисловие
- •Введение
- •Глава 1. Общая теория статистики
- •Предмет, задачи, значение, методы и основные понятия статистики
- •1.1.1. Предмет, задачи, значение и методы статистики
- •1.1.2. Основные понятия статистики
- •1.1.3. Организация системы государственной статистики в рф
- •1.2. Статистическое наблюдение
- •1.2.1. Понятие статистического наблюдения
- •1.2.2. Формы и виды статистического наблюдения
- •1.2.3. Программно-методологические вопросы статистического наблюдения
- •1.3. Статистическая сводка и группировка
- •Структура торговых предприятий района по объему товарооборота
- •Влияние связи магазина с поставщиками на качество поставляемых товаров
- •1.4. Статистические таблицы
- •Число акций, выставленных на аукционы
- •Распределение предприятий по численности работающих
- •Распределение заводов по стоимости основных фондов, млн. Руб.
- •Процент женщин в общей численности населения
- •1.5. Ряды распределения
- •1.5.1. Атрибутивные и вариационные ряды распределения
- •Распределение пар обуви по размерам
- •Распределение работников предприятия по уровню образования, чел.
- •Распределение предприятий по товарной продукции в оптовых ценах
- •Распределение предприятий по товарной продукции в оптовых ценах
- •1.5.2. Графическое изображение рядов распределения
- •1.6. Статистические графики
- •1.6.1. Статистические графики и их элементы
- •1.6.2. Классификация статистических графиков
- •Использование посевных площадей фермерскими хозяйствами региона
- •Использование посевных площадей фермерскими хозяйствами региона
- •Реализация мобильных телефонов торговым предприятием в течение года
- •1.7. Структурные средние рядов распределения
- •1.7.1. Мода
- •Распределение предприятий по товарной продукции
- •1.7.2. Медиана
- •Распределение рабочих по заработной плате
- •Распределение рабочих по заработной плате
- •Распределение предприятий по товарной продукции
- •1.7.3. Квартили, децили и перцентили
- •1.8. Среднее значение признака и его виды
- •1.8.1. Арифметическое среднее значение
- •Выработка рабочими продукции за смену
- •Распределение рабочих по размеру заработной платы
- •Распределение рабочих по выработке
- •Распределение рабочих по выработке
- •1.8.2. Гармоническое среднее значение
- •Издержки производства и себестоимость единицы продукции
- •Цена и стоимость реализованных батонов хлеба, руб.
- •1.8.3. Геометрическое среднее значение
- •1.8.4. Квадратическое среднее значение
- •1.8.5. Среднее значение альтернативного признака
- •1.9. Показатели вариации
- •1.9.1. Абсолютные показатели вариации
- •Распределение магазинов по объему товарооборота
- •Расчетные показатели
- •Расчетные показатели
- •Распределение предприятий по объему товарооборота магазинов
- •Распределение посевных площадей по урожайности
- •Расчетные показатели
- •1.9.2. Дисперсия альтернативного признака
- •1.9.3. Относительные показатели вариации
- •1.9.4. Изучение влияния факторов на вариацию признака
- •Распределение магазинов по объему товарооборота и по числу работников
- •Однодневная выручка торговых предприятий
- •1.10. Выборочный метод в статистике. Эмпирические и теоретические распределения
- •1.10.1. Понятие о выборочном методе
- •1.10.2. Виды выборок
- •1.10.3. Эмпирическая и теоретическая функции распределения
- •Эмпирическое распределение признака y
- •Эмпирическое распределение признака y
- •1.10.4. Симметричные распределения
- •1.10.5. Нормальное распределение
- •Распределение мужчин по росту, см
- •Расчет теоретических частот
- •Эмпирическое распределение
- •1.10.6. Распределение Пуассона
- •Распределение количества бракованных изделий
- •Расчет теоретических частот распределения количества бракованных изделий
- •Эмпирическое распределение
- •1.10.7. Средняя и предельная ошибки выборочного среднего
- •Расчетные показатели
- •1.10.6. Вычисление предельной ошибки (пример 1.10.4)
- •Распределение пачек чая по весу
- •Удельный вес простоев рабочих
- •Распределение обследованных рабочих по разрядам
- •1.10.8. Необходимый объем выборки
- •1.10.9. Комбинированные выборки
- •1.11. Изучение связи между признаками
- •1.11.1. Виды связей между признаками
- •Шкала оценки силы корреляционной связи
- •Шкала Чеддока
- •1.11.2. Парная корреляция
- •1.11.3. Линейный коэффициент корреляции
- •Товарооборот и издержки обращения, тыс. Руб.
- •Расчетные показатели
- •1.11.4. Регрессионные модели парной корреляции
- •Зависимость затрат на ремонт оборудования от продолжительности его эксплуатации
- •Расчетные показатели
- •Расчетные показатели
- •Расчетные показатели
- •Расчетные показатели
- •Расчетные показатели
- •1.11.5. Регрессионные модели множественной корреляции
- •Расчетные показатели
- •Расчетные показатели
- •Расчетные показатели
- •Расчетные показатели
- •1.11.6. Изучение связи между атрибутивными признаками
- •Расчетные показатели для вычисления коэффициентов ассоциации и контингенции
- •Распределение работников торговли по полу и оценке содержания работы
- •Зависимость участия рабочих в забастовках от их образовательного уровня
- •Расчетные показатели для вычисления коэффициентов взаимной сопряженности
- •Себестоимость продукции (х) и накладные расходы на реализацию (y)
- •Сферы деятельности родителей и детей
- •1.11.7. Изучение связи между ранжированными признаками
- •Товарооборот и издержки обращения, тыс. Руб.
- •Расчетные показатели
- •1.11.8. Множественный коэффициент ранговой корреляции
- •Расчетные показатели
- •1.12. Ряды динамики
- •1.12.1. Понятие ряда динамики
- •Динамика списочной численности работников магазина, тыс. Чел.
- •Динамика населения Российской Федерации, тыс. Чел.
- •1.12.2. Сопоставимость уровней рядов динамики
- •Динамика численности населения района,
- •Динамика численности населения района, тыс. Чел.
- •Динамика численности населения района, тыс. Чел.
- •Динамика валового сбора овощей в хозяйствах района, тыс. Ц
- •1.12.3. Средний уровень ряда динамики
- •Динамика списочной численности работников магазина, чел.
- •Динамика продажи мясных консервов, млн. Усл. Банок
- •1.12.4. Показатели изменения уровней ряда динамики
- •Абсолютные приросты (млн. Руб.) и темпы роста выпуска продукции
- •Темпы прироста и темпы наращивания выпуска продукции
- •Реализация телевизоров торговым предприятием в течение года
- •1.12.5. Тренд и методы его изучения
- •Динамика реализации ноутбуков торговым предприятием в течение года
- •Динамика реализации ноутбуков торговым предприятием в течение года
- •Динамика среднедневной реализации продуктов, тыс. Руб.
- •Динамика розничного товарооборота, млрд. Руб.
- •Среднедневная реализация продуктов в супермаркете (тыс. Руб.)
- •1.12.6. Основные виды тренда и трендовых моделей
- •Розничный товарооборот фирмы
- •Расчетные показатели
- •Расчетные показатели для вычисления средних ошибок аппроксимации
- •1.12.7. Прогнозирование уровней ряда динамики с помощью трендовых моделей
- •1.12.7. Изучение сезонных колебаний
- •Расчетные показатели
- •1.13. Изучение структуры социально-экономических явлений
- •1.13.1. Показатели структурных частей социально- экономического явления.
- •Динамика структуры денежных доходов региона России, %
- •Приросты удельных весов всех частей структуры денежных доходов населения региона России, %
- •Темы роста удельных весов всех частей структуры денежных доходов населения региона России
- •1.13.2. Сводные показатели структуры
- •Динамика структуры расходов государственного бюджета, %
- •1.13.3. Концентрация признака
- •Численность работников на промышленных предприятиях
- •Структура среднедушевого дохода населения, %
- •1.13.4. Обобщающий показатель централизации признака
- •Объем продукции предприятий различных форм собственности
- •Объем производства однотипной продукции
- •1.14. Статистические индексы
- •1.14.1. Понятие статистического индекса
- •1.14.2. Индивидуальные динамические индексы
- •1.14.3. Системы индивидуальных индексов
- •Динамика выпуска продукции, тыс. Т
- •Динамика себестоимости единицы продукции, тыс. Руб.
- •1.14.4. Общие динамические индексы
- •Товарооборот торговой фирмы, тыс. Руб.
- •Расчетные показатели
- •Себестоимость единицы молочной продукции, руб.
- •1.14.5. Средние формы агрегатных индексов
- •Стоимость реализованных продуктов, млн. Руб.
- •1.14.6. Системы общих индексов
- •Объем продукции и себестоимость единицы продукции
- •1.14.7. Индексы переменного, фиксированного составов и структурных сдвигов
- •Себестоимость единицы однотипной продукции и ее количество
- •Расчетные показатели
- •1.14.8. Идеальный индекс Фишера
- •1.14.9. Индексы-дефляторы
- •1.14.10. Территориальные индексы
- •Цены на продукты питания (руб.) и количество проданной продукции по двум регионам
- •Расчетные показатели
- •Литература
- •Распределение Стьюдента (t-распределение)
- •Распределение Фишера-Снедекора (f-распределение)
- •Михаил Петрович Замаховский
- •Николай Донатович Изергин
- •Введение в статистику товарных рынков
- •Часть 1
- •140410, Г. Коломна, ул. Зеленая, 30
1.10.7. Средняя и предельная ошибки выборочного среднего
Ошибкой выборочного среднего или ошибкой выборки называется абсолютная величина разности генерального и выборочного средних. Так как генеральное среднее неизвестно, ошибку выборки вычислить нельзя, но ее можно оценить с помощью предельной ошибки:
, (1.10.15)
где
предельная ошибка выборки;
средняя ошибка, вычисляемая по формуле, зависящей от вида выборки;
доверительный коэффициент, значение которого находится по заданной вероятности р в специальных таблицах.
Доверительный интервал, в котором с вероятностью р находится генеральное среднее, имеет вид:
. (1.10.16)
Средняя ошибка малой выборки вычисляется по формуле
, (1.10.17)
где дисперсия малой выборки, вычисляемая по формуле
. (1.10.18)
Предельная ошибка малой выборки вычисляется по формуле (1.10.15), где коэффициент находится по уровню значимости и числу в табл. П4.
Пример 1.10.4. При проверке качества партии колбасы получены следующие данные о процентном содержании поваренной соли в 10 пробах: 4,3; 4,2; 3,8; 4,3; 3,7; 3,9; 4,5; 4,4; 4,0; 3,9. Найдем с вероятностью 0,95 границы, в которых находится средний процент содержания поваренной соли в партии колбасы.
Составим расчётную табл. 1.10.10. По суммам в итоговой строке табл. 1.10.10 вычислим выборочную среднюю, выборочную дисперсию и среднюю ошибку выборки:
, ,
.
Таблица 1.10.10
Расчетные показатели
i |
(%) |
|
|
1 |
4,3 |
0,2 |
0,04 |
2 |
4,2 |
0,1 |
0,01 |
3 |
3,8 |
0,3 |
0,09 |
4 |
4,3 |
0,2 |
0,04 |
5 |
3,7 |
– 0,4 |
0,16 |
6 |
3,9 |
– 0,2 |
0,04 |
7 |
4,5 |
0,4 |
0,16 |
8 |
4,4 |
0,3 |
0,09 |
9 |
4,0 |
–0,1 |
0,01 |
10 |
3,9 |
– 0,2 |
0,04 |
|
41,0 |
|
0,68 |
В табл. П4 по уровню значимости и числу находим доверительный коэффициент: =2,262. Вычислим предельную ошибку выборки: . Найдем доверительный интервал (1.10.16):
или .
Таким образом, с вероятностью 0,95 можно утверждать, что в партии колбасы содержание поваренной соли находится в пределах от 3,9% до 4,3%.
1.10.6. Вычисление предельной ошибки (пример 1.10.4)
Предельную ошибку малой выборки можно найти, применяя Excel (рис. 1.10.6). Для этого надо:
1) в столбце ячеек записать выборку;
2) в меню СЕРВИС выбрать ОПИСАТЕЛЬНАЯ СТАТИСТИКА;
3) указать уровень надежности (доверительную вероятность);
4) снять остальные флажки, указать ячейку выходного интервала и выбрать ОК.
Упражнение 1.10.7. Отобрано 10 рабочих цеха для определения среднего времени выполнения определенной операции рабочими цеха. Выборочное среднее время оказалось равным 10,4 мин, а выборочное среднеквадратическое отклонение – 2 мин. Найдите границы, в которых с вероятностью 0,99 находится генеральная средняя.
Приведем следующие формулы для вычисления средней ошибки большой выборки ( ):
1) средняя ошибка случайной повторной или бесповторной выборки вычисляется соответственно по формуле
или ; (1.10.19)
2) средняя ошибка типической повторной или бесповторной выборки вычисляется соответственно по формуле
или , (1.10.20)
где – средняя генеральных групповых дисперсий;
3) средняя ошибка серийной повторной или бесповторной выборки вычисляется соответственно по формуле
или , (1.10.21)
где – генеральная межгрупповая (межсерийная) дисперсия;
r и R число серий соответственно в выборке и в генеральной совокупности.
Генеральная дисперсия связана с выборочной дисперсией соотношением
. (1.10.22)
При больших значениях n генеральная дисперсия приближенно равна выборочной дисперсии.
Предельная ошибка большой выборки вычисляется по формуле (1.10.15), где коэффициент определяется из соотношения .
Напомним, что выборочное среднее значение альтернативного признака равно выборочной доле единиц в выборке, обладающих этим признаком ( ), а выборочная дисперсия равна произведению .
Пример 1.10.5. При проверке качества хлебобулочных изделий проведено 5%-е выборочное обследование партии нарезных батонов. Из 100 отобранных в выборку батонов 90 батонов оказались стандартными. Средний вес одного батона в выборке составил 500,5 г при среднеквадратическом отклонении 15,4 г. Найдем с вероятностью 0,95 доверительные интервалы для доли стандартных батанов и среднего веса одного батона во всей партии.
По условию выборочная доля:
.
Было проведено 5%-е выборочное обследование, следовательно, во всей партии 2000 батонов. Так как выборка бесповторная механическая или случайная, средняя ошибка выборочной доли равна:
.
Из соотношения , используя табл. П2, найдем доверительный коэффициент: .
Вычислим предельную ошибку: .
Найдем доверительный интервал (1.10.16):
или .
Таким образом, с вероятностью 0,95 можно утверждать, что доля стандартных батонов во всей партии батонов находится в интервале от 0,84 до 0,96.
Вычислим среднюю и предельную ошибки выборочного среднего веса одного батона:
1,5 и .
Найдем доверительный интервал (1.10.16):
или .
Таким образом, с вероятностью 0,95 можно утверждать, что средний вес одного батона во всей партии батонов находится в интервале от 497,6 г до 503,4 г.
Упражнение 1.10.8. Дано распределение пачек чая по весу в выборке из партии чая (табл. 1.10.11).
Таблица 1.10.11