
- •Содержание
- •1 Введение 5
- •2 Управление процессами 88
- •3 Реализация межпроцессного взаимодействия в ос Unix 116
- •4 Файловые системы 156
- •4.1 Основные концепции 156
- •5 Управление оперативной памятью 187
- •6 Управление внешними устройствами 202
- •1Введение
- •Пакетная обработка заданий.
- •Развитие языков и систем программирования.
- •Этапы эволюции.
- •1.1Основы архитектуры вычислительной системы
- •1.1.1Структура вс
- •Структура вычислительной системы.
- •1.1.2Аппаратный уровень вс
- •1.1.3Управление физическими ресурсами вс
- •Пример зависимости от драйвера.
- •1.1.4Управление логическими/виртуальными ресурсами
- •1.1.5Системы программирования
- •Этапы проектирования.
- •Кодирование.
- •Тестирование.
- •Каскадная модель.
- •Каскадная итерационная модель.
- •Спиральная модель.
- •1.1.6Прикладные системы
- •Первый этап развития прикладных систем.
- •Второй этап развития прикладных систем.
- •Третий этап развития прикладных систем.
- •Пакет программ Microsoft Office.
- •Пакет MathCad.
- •Система BaaN.
- •1.1.7Выводы, литература
- •Структура организации вычислительной системы.
- •1.2Основы компьютерной архитектуры
- •1.2.1Структура, основные компоненты
- •Структура компьютера фон Неймана.
- •Базовая архитектура современных компьютеров.
- •1.2.2Оперативное запоминающее устройство
- •Ячейка памяти.
- •Контроль четности.
- •Озу без расслоения памяти — один контроллер на все банки.
- •Озу с расслоением памяти — каждый банк обслуживает отдельный контроллер.
- •1.2.3Центральный процессор
- •Структура организации центрального процессора.
- •1.2.3.1Регистровая память
- •1.2.3.2Устройство управления. Арифметико-логическое устройство
- •1.2.3.3Кэш-память
- •Общая схема работы кэШа.
- •1.2.3.4Аппарат прерываний
- •Использование иерархической модели регистров прерывания.
- •Использование вектора прерываний.
- •Этап программной обработки прерываний.
- •1.2.4Внешние устройства
- •Внешние устройства.
- •1.2.4.1Внешние запоминающие устройства
- •Магнитная лента.
- •Принцип устройства магнитного диска.
- •Принцип устройства магнитного барабана.
- •Принцип устройства памяти на магнитных доменах.
- •1.2.4.2Модели синхронизации при обмене с внешними устройствами
- •Синхронная и асинхронная работа с ву.
- •1.2.4.3Потоки данных. Организация управления внешними устройствами
- •Непосредственное управление центральным процессором внешнего устройства.
- •Синхронное/асинхронное управление внешними устройствами с использованием контроллеров внешних устройств.
- •Использование контроллера прямого доступа к памяти (dma) или процессора (канала) ввода-вывода при обмене.
- •1.2.5Иерархия памяти
- •Иерархия памяти.
- •1.2.6Аппаратная поддержка операционной системы и систем программирования
- •1.2.6.1Требования к аппаратуре для поддержки мультипрограммного режима
- •Мультипрограммный режим.
- •1.2.6.2Проблемы, возникающие при исполнении программ
- •Вложенные обращения к подпрограммам.
- •Перемещаемость программы по озу.
- •Фрагментация памяти.
- •1.2.6.3Регистровые окна
- •Регистровые окна.
- •Регистровые окна. Вход и выход из подпрограммы.
- •1.2.6.4Системный стек
- •Системный стек.
- •1.2.6.5Виртуальная память
- •Страничная организация памяти.
- •Страничная организация памяти. Преобразование виртуального адреса в физический.
- •Страничная организация памяти. Схема преобразования адресов.
- •1.2.7Многомашинные, многопроцессорные ассоциации
- •Классификация мкмд.
- •Numa-система.
- •1.2.8Терминальные комплексы (тк)
- •Терминальные комплексы.
- •1.2.9Компьютерные сети
- •Компьютерные сети.
- •1.2.10Организация сетевого взаимодействия. Эталонная модель iso/osi
- •Модель организации взаимодействия в сети iso/osi.
- •Логическое взаимодействие сетевых устройств по I-ому протоколу.
- •1.2.11Семейство протоколов tcp/ip. Соответствие модели iso/osi
- •Семейство протоколов tcp/ip.
- •Взаимодействие между уровнями протоколов tcp/ip.
- •Система адресации протокола ip.
- •Маршрутизация дейтаграмм.
- •1.3Основы архитектуры операционных систем
- •1.3.1Структура ос
- •Структурная организация ос.
- •Структура ос с монолитным ядром.
- •Структура ос с микроядерной архитектурой.
- •1.3.2Логические функции ос
- •1.3.3Типы операционных систем
- •Структура сетевой ос.
- •Структура распределенной ос.
- •2Управление процессами
- •2.1Основные концепции
- •2.1.1Модели операционных систем
- •2.1.2Типы процессов
- •Типы процессов: однонитевая (а) и многонитевая (б) организации.
- •2.1.3Контекст процесса
- •2.2Реализация процессов в ос Unix
- •2.2.1Процесс ос Unix
- •Разделение сегмента кода.
- •2.2.2Базовые средства управления процессами в ос Unix
- •Пример использования системного вызова fork().
- •Пример использования системного вызова execl().
- •Пример использования схемы fork-exec.
- •2.2.3Жизненный цикл процесса. Состояния процесса
- •Жизненный цикл процессов.
- •2.2.4Формирование процессов 0 и 1
- •Формирование нулевого и первого процессов.
- •Инициализация системы.
- •2.3Планирование
- •2.4Взаимодействие процессов
- •2.4.1Разделяемые ресурсы и синхронизация доступа к ним
- •Гонка процессов.
- •Пример тупиковой ситуации (deadlock).
- •2.4.2Способы организации взаимного исключения
- •Пример двоичного семафора.
- •2.4.3Классические задачи синхронизации процессов
- •Обещающие философы.
- •3Реализация межпроцессного взаимодействия в ос Unix
- •3.1Базовые средства реализации взаимодействия процессов в ос Unix
- •Способы организации взаимодействия процессов.
- •3.1.1Сигналы
- •3.1.2Неименованные каналы
- •3.1.3Именованные каналы
- •3.1.4Модель межпроцессного взаимодействия «главный–подчиненный»
- •Общая схема трассировки процессов.
- •3.2Система межпроцессного взаимодействия ipc (Inter-Process Communication)
- •3.2.1Очередь сообщений ipc
- •Очередь сообщений ipc.
- •0666 Определяет права доступа */
- •3.2.2Разделяемая память ipc
- •3.2.3Массив семафоров ipc
- •Int val; /* значение одного семафора */
- •3.3Сокеты — унифицированный интерфейс программирования распределенных систем
- •4Файловые системы
- •4.1Основные концепции
- •4.1.1Структурная организация файлов
- •4.1.2Атрибуты файлов
- •4.1.3Основные правила работы с файлами. Типовые программные интерфейсы
- •Модель одноуровневой файловой системы.
- •Модель двухуровневой файловой системы.
- •Модель иерархической файловой системы.
- •4.1.4Подходы в практической реализации файловой системы
- •Структура «системного» диска.
- •4.1.5Модели реализации файлов
- •Модель непрерывных файлов.
- •Модель файлов, имеющих организацию связанного списка.
- •4.1.6Модели реализации каталогов
- •Модели организации каталогов.
- •4.1.7Соответствие имени файла и его содержимого
- •Пример жесткой связи.
- •Пример символической связи.
- •4.1.8Координация использования пространства внешней памяти
- •4.1.9Квотирование пространства файловой системы
- •Квотирование пространства файловой системы.
- •4.1.10Надежность файловой системы
- •4.1.11Проверка целостности файловой системы
- •Проверка целостности файловой системы. Непротиворечивость файловой системы соблюдена.
- •Проверка целостности файловой системы. Зафиксирована пропажа блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование свободного блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование занятого блока.
- •Проверка целостности файловой системы. Контроль жестких связей.
- •4.2Примеры реализаций файловых систем
- •4.2.1Организация файловой системы ос Unix. Виды файлов. Права доступа
- •4.2.2Логическая структура каталогов
- •Логическая структура каталогов.
- •4.2.3Внутренняя организация файловой системы: модель версии System V
- •Структура файловой системы версии System V.
- •4.2.3.1Работа с массивами номеров свободных блоков
- •Работа с массивами номеров свободных блоков.
- •4.2.3.2Работа с массивом свободных индексных дескрипторов
- •4.2.3.3Индексные дескрипторы. Адресация блоков файла
- •Индексные дескрипторы.
- •Адресация блоков файла.
- •4.2.3.4Файл-каталог
- •Файл-каталог.
- •Установление связей.
- •4.2.3.5Достоинства и недостатки файловой системы модели System V
- •4.2.4Внутренняя организация файловой системы: модель версии Fast File System (ffs) bsd
- •Структура файловой системы версии ffs bsd.
- •4.2.4.1Стратегии размещения
- •Стратегия размещения последовательных блоков файлов.
- •4.2.4.2Внутренняя организация блоков
- •Внутренняя организация блоков (блоки выровнены по кратности).
- •4.2.4.3Выделение пространства для файла
- •Выделение пространства для файла.
- •4.2.4.4Структура каталога ffs
- •Структура каталога ffs bsd.
- •4.2.4.5Блокировка доступа к содержимому файла
- •5Управление оперативной памятью
- •5.1Одиночное непрерывное распределение
- •Одиночное непрерывное распределение.
- •5.2Распределение неперемещаемыми разделами
- •Распределение неперемещаемыми разделами.
- •5.3Распределение перемещаемыми разделами
- •Распределение перемещаемыми разделами.
- •5.4Страничное распределение
- •Страничное распределение.
- •Иерархическая организация таблицы страниц.
- •Использование хеш-таблиц.
- •Инвертированные таблицы страниц.
- •Замещение страниц. Алгоритм «Часы».
- •5.5Сегментное распределение
- •Сегментное распределение.
- •5.6Сегментно-страничное распределение
- •Сегментно-страничное распределение. Упрощенная модель Intel.
- •6Управление внешними устройствами
- •6.1Общие концепции
- •6.1.1Архитектура организации управления внешними устройствами
- •Модели управления внешними устройствами: непосредственное (а), синхронное/асинхронное (б), с использованием контроллера прямого доступа или процессора (канала) ввода-вывода.
- •6.1.2Программное управление внешними устройствами
- •Иерархия архитектуры программного управления внешними устройствами.
- •6.1.3Планирование дисковых обменов
- •Планирование дисковых обменов. Модель fifo.
- •Планирование дисковых обменов. Модель lifo.
- •Планирование дисковых обменов. Модель sstf.
- •Планирование дисковых обменов. Модель scan.
- •Планирование дисковых обменов. Модель c-scan.
- •6.1.4Raid-системы. Уровни raid
- •Raid 2. Избыточность с кодами Хэмминга (Hamming, исправляет одинарные и выявляет двойные ошибки).
- •Raid 3. Четность с чередующимися битами.
- •Raid 5. Распределенная четность (циклическое распределение четности).
- •6.2Работа с внешними устройствами в ос Unix
- •6.2.1Файлы устройств, драйверы
- •6.2.2Системные таблицы драйверов устройств
- •6.2.3Ситуации, вызывающие обращение к функциям драйвера
- •6.2.4Включение, удаление драйверов из системы
- •6.2.5Организация обмена данными с файлами
- •Организация обмена данными с файлами.
- •6.2.6Буферизация при блок-ориентированном обмене
- •6.2.7Борьба со сбоями
3.2.1Очередь сообщений ipc
Система предоставляет возможность создания некоторого функционально расширенного аналога канала, но главное отличие заключается в том, что сообщения в очереди сообщений IPC типизированы. Каждое сообщение помимо содержательной своей части имеет атрибут тип сообщения. Тогда очередь сообщений можно рассматривать с двух позиций: во-первых, как сквозную очередь (когда тип сообщения не важен, они все находятся в единой очереди), а, во-вторых, как суперпозицию очередей однотипных сообщений (Рис. 90.). При этом способ интерпретации допускает одновременно различные типы интерпретации. Непосредственный выбор интерпретации определяется в момент считывания сообщения из очереди.
Очередь сообщений ipc.
Для организации работы с очередью предусмотрен набор функций. Во-первых, это уже упомянутая функция создания/доступа к очереди сообщений.
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/message.h>
int msgget(key_t key, int msgflag);
У данной функции два параметра: ключ и флаги. В случае успешного выполнения функция возвращает положительный дескриптор очереди, иначе возвращается -1.
Существует блок функций использования очереди: в частности, функции отправки и приема сообщения. Сначала рассмотрим функцию отправки сообщений.
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgsnd(int msqid, const void *msgp, size_t msgsz,
int msgflg);
Первый аргумент данной функции — идентификатор очереди, полученный в результате вызова msgget(). Второй аргумент — указатель на буфер, содержащий реальные данные и тип сообщения, подлежащего посылке в очередь, в третьем аргументе указывается размер буфера. В качестве буфера необходимо указывать структуру, содержащую следующие поля:
long msgtype — тип сообщения (только положительное длинное целое);
char msgtext[] — данные (тело сообщения).
Последний аргумент функции — это флаги. Среди разнообразных флагов можно выделить те, которые определяют режим блокировки при отправке сообщения. Если флаг равен 0, то вызов будет блокироваться, если для отправки недостаточно системных ресурсов. Можно установить флаг IPC_NOWAIT, который позволяет работать без блокировки: тогда в случае возникновения ошибки при отправке сообщения, вызов вернет -1, а переменная errno будет содержать соответствующий код ошибки.
Для получения сообщений используется функция msgrcv().
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgrcv(int msqid, void *msgp, size_t msgsz,
long msgtyp, int msgflg);
Первые три аргумента аналогичны аргументам предыдущего вызова: дескриптор очереди, указатель на буфер, куда следует поместить данные, и максимальный размер (в байтах) тела сообщения, которое можно туда поместить. Буфер, используемый для приема сообщения, должен иметь структуру, описанную выше.
Четвертый аргумент указывает тип сообщения, которое процесс желает получить. Если значение этого аргумента есть 0, то будет получено сообщение любого типа (т.е. идет работа со сквозной очередью). Если значение аргумента msgtyp больше 0, из очереди будет извлечено сообщение указанного типа. Если же значение аргумента msgtyp отрицательно, то тип принимаемого сообщения определяется как наименьшее значение среди типов, которые меньше модуля msgtyp. В любом случае, как уже говорилось, из подочереди с заданным типом (или из общей очереди, если тип не задан) будет выбрано самое старое сообщение.
Последним аргументом является комбинация (побитовое сложение) флагов. Если среди флагов не указан IPC_NOWAIT, и в очереди не найдено ни одного сообщения, удовлетворяющего критериям выбора, процесс будет заблокирован до появления такого сообщения. (Однако, если такое сообщение существует, но его длина превышает указанную в аргументе msgsz, то процесс заблокирован не будет, и вызов сразу вернет -1; сообщение при этом останется в очереди). Если же флаг IPC_NOWAIT указан, и в очереди нет ни одного необходимого сообщения, то вызов сразу вернет -1.
Процесс может также указать флаг MSG_NOERROR: в этом случае он может прочитать сообщение, даже если его длина превышает указанную емкость буфера. Тогда в буфер будет записано первые msgsz байт из тела сообщения, а остальные данные отбрасываются.
В случае успешного завершения функция возвращает количество успешно прочитанных байтов в теле сообщения.
Следующая группа функций — это функции управления ресурсом. Эти функции обеспечивают в общем случае изменение режима функционирования ресурса, в т.ч. и удаление ресурса.
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgctl(int msqid, int cmd, struct msgid_ds *buf);
Данная функция используется для получения или изменения управляющих параметров, связанных с очередью, и уничтожения очереди. Ее аргументы — идентификатор ресурса, команда, которую необходимо выполнить, и структура, описывающая управляющие параметры очереди. Тип msgid_ds представляет собой структуру, в полях которой хранятся права доступа к очереди, статистика обращений к очереди, ее размер и т.п.
Возможные значения аргумента cmd:
IPC_STAT — скопировать структуру, описывающую управляющие параметры очереди по адресу, указанному в параметре buf;
IPC_SET — заменить структуру, описывающую управляющие параметры очереди, на структуру, находящуюся по адресу, указанному в параметре buf;
IPC_RMID — удалить очередь.
Пример. Использование очереди сообщений. В приведенном ниже примере участвуют три процесса: основной процесс и процессы A и B. Основной процесс считывает из стандартного ввода текстовую строку. Если она начинается на букву A, то эта строка посылается процессу A, если на B — то процессу B, если на Q — то обоим процессам (в этом случае основной процесс ждет некоторое время, затем удаляет очередь сообщений и завершается). Процессы A и B считывают из очереди адресуемые им сообщения и распечатывают их на экране. Если пришедшее сообщение начинается с буквы Q, то процесс завершается.
/* ОСНОВНОЙ ПРОЦЕСС */
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/message.h>
#include <stdio.h>
/* декларация структуры сообщения */
struct
{
long mtype; /* тип сообщения */
char Data[256]; /* сообщение */
} Message;
int main(int argc, char **argv)
{
key_t key;
int msgid;
char str[256];
/*получаем уникальный ключ, однозначно определяющий
доступ к ресурсу данного типа */
key = ftok("/usr/mash",'s');
/* создаем новую очередь сообщений,