
- •Содержание
- •1 Введение 5
- •2 Управление процессами 88
- •3 Реализация межпроцессного взаимодействия в ос Unix 116
- •4 Файловые системы 156
- •4.1 Основные концепции 156
- •5 Управление оперативной памятью 187
- •6 Управление внешними устройствами 202
- •1Введение
- •Пакетная обработка заданий.
- •Развитие языков и систем программирования.
- •Этапы эволюции.
- •1.1Основы архитектуры вычислительной системы
- •1.1.1Структура вс
- •Структура вычислительной системы.
- •1.1.2Аппаратный уровень вс
- •1.1.3Управление физическими ресурсами вс
- •Пример зависимости от драйвера.
- •1.1.4Управление логическими/виртуальными ресурсами
- •1.1.5Системы программирования
- •Этапы проектирования.
- •Кодирование.
- •Тестирование.
- •Каскадная модель.
- •Каскадная итерационная модель.
- •Спиральная модель.
- •1.1.6Прикладные системы
- •Первый этап развития прикладных систем.
- •Второй этап развития прикладных систем.
- •Третий этап развития прикладных систем.
- •Пакет программ Microsoft Office.
- •Пакет MathCad.
- •Система BaaN.
- •1.1.7Выводы, литература
- •Структура организации вычислительной системы.
- •1.2Основы компьютерной архитектуры
- •1.2.1Структура, основные компоненты
- •Структура компьютера фон Неймана.
- •Базовая архитектура современных компьютеров.
- •1.2.2Оперативное запоминающее устройство
- •Ячейка памяти.
- •Контроль четности.
- •Озу без расслоения памяти — один контроллер на все банки.
- •Озу с расслоением памяти — каждый банк обслуживает отдельный контроллер.
- •1.2.3Центральный процессор
- •Структура организации центрального процессора.
- •1.2.3.1Регистровая память
- •1.2.3.2Устройство управления. Арифметико-логическое устройство
- •1.2.3.3Кэш-память
- •Общая схема работы кэШа.
- •1.2.3.4Аппарат прерываний
- •Использование иерархической модели регистров прерывания.
- •Использование вектора прерываний.
- •Этап программной обработки прерываний.
- •1.2.4Внешние устройства
- •Внешние устройства.
- •1.2.4.1Внешние запоминающие устройства
- •Магнитная лента.
- •Принцип устройства магнитного диска.
- •Принцип устройства магнитного барабана.
- •Принцип устройства памяти на магнитных доменах.
- •1.2.4.2Модели синхронизации при обмене с внешними устройствами
- •Синхронная и асинхронная работа с ву.
- •1.2.4.3Потоки данных. Организация управления внешними устройствами
- •Непосредственное управление центральным процессором внешнего устройства.
- •Синхронное/асинхронное управление внешними устройствами с использованием контроллеров внешних устройств.
- •Использование контроллера прямого доступа к памяти (dma) или процессора (канала) ввода-вывода при обмене.
- •1.2.5Иерархия памяти
- •Иерархия памяти.
- •1.2.6Аппаратная поддержка операционной системы и систем программирования
- •1.2.6.1Требования к аппаратуре для поддержки мультипрограммного режима
- •Мультипрограммный режим.
- •1.2.6.2Проблемы, возникающие при исполнении программ
- •Вложенные обращения к подпрограммам.
- •Перемещаемость программы по озу.
- •Фрагментация памяти.
- •1.2.6.3Регистровые окна
- •Регистровые окна.
- •Регистровые окна. Вход и выход из подпрограммы.
- •1.2.6.4Системный стек
- •Системный стек.
- •1.2.6.5Виртуальная память
- •Страничная организация памяти.
- •Страничная организация памяти. Преобразование виртуального адреса в физический.
- •Страничная организация памяти. Схема преобразования адресов.
- •1.2.7Многомашинные, многопроцессорные ассоциации
- •Классификация мкмд.
- •Numa-система.
- •1.2.8Терминальные комплексы (тк)
- •Терминальные комплексы.
- •1.2.9Компьютерные сети
- •Компьютерные сети.
- •1.2.10Организация сетевого взаимодействия. Эталонная модель iso/osi
- •Модель организации взаимодействия в сети iso/osi.
- •Логическое взаимодействие сетевых устройств по I-ому протоколу.
- •1.2.11Семейство протоколов tcp/ip. Соответствие модели iso/osi
- •Семейство протоколов tcp/ip.
- •Взаимодействие между уровнями протоколов tcp/ip.
- •Система адресации протокола ip.
- •Маршрутизация дейтаграмм.
- •1.3Основы архитектуры операционных систем
- •1.3.1Структура ос
- •Структурная организация ос.
- •Структура ос с монолитным ядром.
- •Структура ос с микроядерной архитектурой.
- •1.3.2Логические функции ос
- •1.3.3Типы операционных систем
- •Структура сетевой ос.
- •Структура распределенной ос.
- •2Управление процессами
- •2.1Основные концепции
- •2.1.1Модели операционных систем
- •2.1.2Типы процессов
- •Типы процессов: однонитевая (а) и многонитевая (б) организации.
- •2.1.3Контекст процесса
- •2.2Реализация процессов в ос Unix
- •2.2.1Процесс ос Unix
- •Разделение сегмента кода.
- •2.2.2Базовые средства управления процессами в ос Unix
- •Пример использования системного вызова fork().
- •Пример использования системного вызова execl().
- •Пример использования схемы fork-exec.
- •2.2.3Жизненный цикл процесса. Состояния процесса
- •Жизненный цикл процессов.
- •2.2.4Формирование процессов 0 и 1
- •Формирование нулевого и первого процессов.
- •Инициализация системы.
- •2.3Планирование
- •2.4Взаимодействие процессов
- •2.4.1Разделяемые ресурсы и синхронизация доступа к ним
- •Гонка процессов.
- •Пример тупиковой ситуации (deadlock).
- •2.4.2Способы организации взаимного исключения
- •Пример двоичного семафора.
- •2.4.3Классические задачи синхронизации процессов
- •Обещающие философы.
- •3Реализация межпроцессного взаимодействия в ос Unix
- •3.1Базовые средства реализации взаимодействия процессов в ос Unix
- •Способы организации взаимодействия процессов.
- •3.1.1Сигналы
- •3.1.2Неименованные каналы
- •3.1.3Именованные каналы
- •3.1.4Модель межпроцессного взаимодействия «главный–подчиненный»
- •Общая схема трассировки процессов.
- •3.2Система межпроцессного взаимодействия ipc (Inter-Process Communication)
- •3.2.1Очередь сообщений ipc
- •Очередь сообщений ipc.
- •0666 Определяет права доступа */
- •3.2.2Разделяемая память ipc
- •3.2.3Массив семафоров ipc
- •Int val; /* значение одного семафора */
- •3.3Сокеты — унифицированный интерфейс программирования распределенных систем
- •4Файловые системы
- •4.1Основные концепции
- •4.1.1Структурная организация файлов
- •4.1.2Атрибуты файлов
- •4.1.3Основные правила работы с файлами. Типовые программные интерфейсы
- •Модель одноуровневой файловой системы.
- •Модель двухуровневой файловой системы.
- •Модель иерархической файловой системы.
- •4.1.4Подходы в практической реализации файловой системы
- •Структура «системного» диска.
- •4.1.5Модели реализации файлов
- •Модель непрерывных файлов.
- •Модель файлов, имеющих организацию связанного списка.
- •4.1.6Модели реализации каталогов
- •Модели организации каталогов.
- •4.1.7Соответствие имени файла и его содержимого
- •Пример жесткой связи.
- •Пример символической связи.
- •4.1.8Координация использования пространства внешней памяти
- •4.1.9Квотирование пространства файловой системы
- •Квотирование пространства файловой системы.
- •4.1.10Надежность файловой системы
- •4.1.11Проверка целостности файловой системы
- •Проверка целостности файловой системы. Непротиворечивость файловой системы соблюдена.
- •Проверка целостности файловой системы. Зафиксирована пропажа блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование свободного блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование занятого блока.
- •Проверка целостности файловой системы. Контроль жестких связей.
- •4.2Примеры реализаций файловых систем
- •4.2.1Организация файловой системы ос Unix. Виды файлов. Права доступа
- •4.2.2Логическая структура каталогов
- •Логическая структура каталогов.
- •4.2.3Внутренняя организация файловой системы: модель версии System V
- •Структура файловой системы версии System V.
- •4.2.3.1Работа с массивами номеров свободных блоков
- •Работа с массивами номеров свободных блоков.
- •4.2.3.2Работа с массивом свободных индексных дескрипторов
- •4.2.3.3Индексные дескрипторы. Адресация блоков файла
- •Индексные дескрипторы.
- •Адресация блоков файла.
- •4.2.3.4Файл-каталог
- •Файл-каталог.
- •Установление связей.
- •4.2.3.5Достоинства и недостатки файловой системы модели System V
- •4.2.4Внутренняя организация файловой системы: модель версии Fast File System (ffs) bsd
- •Структура файловой системы версии ffs bsd.
- •4.2.4.1Стратегии размещения
- •Стратегия размещения последовательных блоков файлов.
- •4.2.4.2Внутренняя организация блоков
- •Внутренняя организация блоков (блоки выровнены по кратности).
- •4.2.4.3Выделение пространства для файла
- •Выделение пространства для файла.
- •4.2.4.4Структура каталога ffs
- •Структура каталога ffs bsd.
- •4.2.4.5Блокировка доступа к содержимому файла
- •5Управление оперативной памятью
- •5.1Одиночное непрерывное распределение
- •Одиночное непрерывное распределение.
- •5.2Распределение неперемещаемыми разделами
- •Распределение неперемещаемыми разделами.
- •5.3Распределение перемещаемыми разделами
- •Распределение перемещаемыми разделами.
- •5.4Страничное распределение
- •Страничное распределение.
- •Иерархическая организация таблицы страниц.
- •Использование хеш-таблиц.
- •Инвертированные таблицы страниц.
- •Замещение страниц. Алгоритм «Часы».
- •5.5Сегментное распределение
- •Сегментное распределение.
- •5.6Сегментно-страничное распределение
- •Сегментно-страничное распределение. Упрощенная модель Intel.
- •6Управление внешними устройствами
- •6.1Общие концепции
- •6.1.1Архитектура организации управления внешними устройствами
- •Модели управления внешними устройствами: непосредственное (а), синхронное/асинхронное (б), с использованием контроллера прямого доступа или процессора (канала) ввода-вывода.
- •6.1.2Программное управление внешними устройствами
- •Иерархия архитектуры программного управления внешними устройствами.
- •6.1.3Планирование дисковых обменов
- •Планирование дисковых обменов. Модель fifo.
- •Планирование дисковых обменов. Модель lifo.
- •Планирование дисковых обменов. Модель sstf.
- •Планирование дисковых обменов. Модель scan.
- •Планирование дисковых обменов. Модель c-scan.
- •6.1.4Raid-системы. Уровни raid
- •Raid 2. Избыточность с кодами Хэмминга (Hamming, исправляет одинарные и выявляет двойные ошибки).
- •Raid 3. Четность с чередующимися битами.
- •Raid 5. Распределенная четность (циклическое распределение четности).
- •6.2Работа с внешними устройствами в ос Unix
- •6.2.1Файлы устройств, драйверы
- •6.2.2Системные таблицы драйверов устройств
- •6.2.3Ситуации, вызывающие обращение к функциям драйвера
- •6.2.4Включение, удаление драйверов из системы
- •6.2.5Организация обмена данными с файлами
- •Организация обмена данными с файлами.
- •6.2.6Буферизация при блок-ориентированном обмене
- •6.2.7Борьба со сбоями
Логическое взаимодействие сетевых устройств по I-ому протоколу.
Протокол — формальное описание сообщений и правил, по которым сетевые устройства (вычислительные системы) осуществляют обмен информацией. Таким образом, протокол обеспечивает взаимодействие в сети между различными машинами на одном уровне. Любой из уровней может содержать произвольное число протоколов, но общаться могут лишь протоколы одного уровня. Также под протоколом будут пониматься правила взаимодействия одноименных, или одноранговых, уровней.
Интерфейс — правила взаимодействия вышестоящего уровня с нижестоящим.
Служба (или сервис) — набор операций, предоставляемых нижестоящим уровнем вышестоящему.
Стек протоколов — перечень разноуровневых протоколов, реализованных в системе. Стек может быть произвольной глубины, т.е. в нем, возможно, не будут представлены протоколы некоторых уровней модели ISO/OSI.
1.2.11Семейство протоколов tcp/ip. Соответствие модели iso/osi
Рассмотрим еще одну модель организации сетевого взаимодействия — семейство протоколов TCP/IP (Рис. 60.). Это классическая четырехуровневая модель организации сетевого взаимодействия. Протоколы семейства TCP/IP основаны на сети коммутации пакетов. Изначально данные протоколы были разработаны как стандарт военных протоколов министерства обороны США в агентстве перспективных разработок МО США DARPA. Это агентство разработало сеть ARPA-net, которая в своем развитии легла в основу современной сети Internet (поскольку это семейство протоколов было интегрировано в ОС BSD Unix).
Семейство протоколов tcp/ip.
Попытаемся сопоставить модели TCP/IP и ISO/OSI.
Уровень доступа к сети. Этот уровень соответствует физическому и канальному уровням модели ISO/OSI. На нем решаются проблемы сетевого адаптера, драйвера сетевого адаптера и проблемы среды передачи данных.
Межсетевой уровень (или internet-уровень). В некотором смысле ему соответствует сетевой уровень модели ISO/OSI. Т.е. на этом уровне решаются проблемы адресации и маршрутизации по сети.
Транспортный уровень. Он покрывает сеансовый и транспортный уровни модели ISO/OSI. На этом уровне имеется возможность использования протоколов, которые устанавливают виртуальное соединение или не устанавливают его.
Уровень прикладных программ. Он разрешает проблемы уровня представления и уровня прикладных программ модели ISO/OSI.
Эти уровни модели TCP/IP являются пакетными: на каждом уровне система оперирует порциями данных, обладающими характеристиками соответствующего уровня (Рис. 61.). Имея содержательную информацию на прикладном уровне, двигаясь от верхнего уровня модели к нижнему, эта информация при необходимости дробится на пакеты фиксированного размера, и к каждому из них добавляется заголовочная информация.
Взаимодействие между уровнями протоколов tcp/ip.
Остановимся на каждом из уровней модели TCP/IP более подробно.
На уровне доступа к сети протоколы обеспечивают систему средствами для передачи данных другим устройствам в сети. В качестве примера можно привести протокол Ethernet, являющегося разработкой исследовательского центра компании Xerox (1976 г.), который основывается на единой шине (это широковещательная сеть). Для сетевых устройств обеспечивается множественный доступ с контролем несущей и обнаружением конфликтов (Carrier Sense Multiple Access with Collision Detection — CSMA/CD). Термины широковещательный и множественный доступ означают, что любой пакет, «выкинутый» в сеть, виден всем абонентам этой сети. Каждый абонент «слушает» сеть, и тот, кому предназначен пакет, забирает его. Контроль несущей означает, что каждый абонент, «слушая» сеть, распознает, свободна она или занята. Как только сеть становится свободной, устройство может «закидывать» очередную порцию данных. При этом устройство «слушает» как свою передачу, так и передачи других абонентов. «Бросая» в сеть, устройство способно распознать искажения, которые означают, что какое-то еще устройство также пытается послать данные в сеть. В этом случае обычно реализуется следующая стратегия: оба абонента прекращают вещание и берут тайм-аут на некоторый случайный промежуток времени (чтобы минимизировать повторные коллизии), а затем повторяют свои попытки. Данная сеть обладает типичными недостатками широковещательной сети: при интенсивной работе часто возникает ситуация, когда линия занята. Также при интенсивной работе возрастает частота конфликтов, что ведет к снижению производительности системы.
В качестве физической среды передачи данных используются самые разные источники: это может быть «толстый» Ethernet, «тонкий» Ethernet, витая пара, оптоволокно, радиосигнал.
Межсетевой уровень. Протокол IP — это один из основных протоколов. Данный протокол реализует следующие функции:
формирование дейтаграмм;
поддержание системы адресации;
обмен данными между транспортным уровнем и уровнем доступа к сети;
организация маршрутизации дейтаграмм;
разбиение и обратная сборка дейтаграмм.
Основная функция этого протокола — поддержание системы адресации, позволяющей объединять различные (или гетерогенные) сети в единое целое (т.е. это межсетевая адресация — internet-адресация), а также поддержание маршрутизации. IP-адрес — это 32-разрядное число, которое кодирует информацию о конкретной сети и компьютере внутри этой сети. Имеются три категории содержательных IP-адресов сетей (Рис. 62.).