
- •Содержание
- •1 Введение 5
- •2 Управление процессами 88
- •3 Реализация межпроцессного взаимодействия в ос Unix 116
- •4 Файловые системы 156
- •4.1 Основные концепции 156
- •5 Управление оперативной памятью 187
- •6 Управление внешними устройствами 202
- •1Введение
- •Пакетная обработка заданий.
- •Развитие языков и систем программирования.
- •Этапы эволюции.
- •1.1Основы архитектуры вычислительной системы
- •1.1.1Структура вс
- •Структура вычислительной системы.
- •1.1.2Аппаратный уровень вс
- •1.1.3Управление физическими ресурсами вс
- •Пример зависимости от драйвера.
- •1.1.4Управление логическими/виртуальными ресурсами
- •1.1.5Системы программирования
- •Этапы проектирования.
- •Кодирование.
- •Тестирование.
- •Каскадная модель.
- •Каскадная итерационная модель.
- •Спиральная модель.
- •1.1.6Прикладные системы
- •Первый этап развития прикладных систем.
- •Второй этап развития прикладных систем.
- •Третий этап развития прикладных систем.
- •Пакет программ Microsoft Office.
- •Пакет MathCad.
- •Система BaaN.
- •1.1.7Выводы, литература
- •Структура организации вычислительной системы.
- •1.2Основы компьютерной архитектуры
- •1.2.1Структура, основные компоненты
- •Структура компьютера фон Неймана.
- •Базовая архитектура современных компьютеров.
- •1.2.2Оперативное запоминающее устройство
- •Ячейка памяти.
- •Контроль четности.
- •Озу без расслоения памяти — один контроллер на все банки.
- •Озу с расслоением памяти — каждый банк обслуживает отдельный контроллер.
- •1.2.3Центральный процессор
- •Структура организации центрального процессора.
- •1.2.3.1Регистровая память
- •1.2.3.2Устройство управления. Арифметико-логическое устройство
- •1.2.3.3Кэш-память
- •Общая схема работы кэШа.
- •1.2.3.4Аппарат прерываний
- •Использование иерархической модели регистров прерывания.
- •Использование вектора прерываний.
- •Этап программной обработки прерываний.
- •1.2.4Внешние устройства
- •Внешние устройства.
- •1.2.4.1Внешние запоминающие устройства
- •Магнитная лента.
- •Принцип устройства магнитного диска.
- •Принцип устройства магнитного барабана.
- •Принцип устройства памяти на магнитных доменах.
- •1.2.4.2Модели синхронизации при обмене с внешними устройствами
- •Синхронная и асинхронная работа с ву.
- •1.2.4.3Потоки данных. Организация управления внешними устройствами
- •Непосредственное управление центральным процессором внешнего устройства.
- •Синхронное/асинхронное управление внешними устройствами с использованием контроллеров внешних устройств.
- •Использование контроллера прямого доступа к памяти (dma) или процессора (канала) ввода-вывода при обмене.
- •1.2.5Иерархия памяти
- •Иерархия памяти.
- •1.2.6Аппаратная поддержка операционной системы и систем программирования
- •1.2.6.1Требования к аппаратуре для поддержки мультипрограммного режима
- •Мультипрограммный режим.
- •1.2.6.2Проблемы, возникающие при исполнении программ
- •Вложенные обращения к подпрограммам.
- •Перемещаемость программы по озу.
- •Фрагментация памяти.
- •1.2.6.3Регистровые окна
- •Регистровые окна.
- •Регистровые окна. Вход и выход из подпрограммы.
- •1.2.6.4Системный стек
- •Системный стек.
- •1.2.6.5Виртуальная память
- •Страничная организация памяти.
- •Страничная организация памяти. Преобразование виртуального адреса в физический.
- •Страничная организация памяти. Схема преобразования адресов.
- •1.2.7Многомашинные, многопроцессорные ассоциации
- •Классификация мкмд.
- •Numa-система.
- •1.2.8Терминальные комплексы (тк)
- •Терминальные комплексы.
- •1.2.9Компьютерные сети
- •Компьютерные сети.
- •1.2.10Организация сетевого взаимодействия. Эталонная модель iso/osi
- •Модель организации взаимодействия в сети iso/osi.
- •Логическое взаимодействие сетевых устройств по I-ому протоколу.
- •1.2.11Семейство протоколов tcp/ip. Соответствие модели iso/osi
- •Семейство протоколов tcp/ip.
- •Взаимодействие между уровнями протоколов tcp/ip.
- •Система адресации протокола ip.
- •Маршрутизация дейтаграмм.
- •1.3Основы архитектуры операционных систем
- •1.3.1Структура ос
- •Структурная организация ос.
- •Структура ос с монолитным ядром.
- •Структура ос с микроядерной архитектурой.
- •1.3.2Логические функции ос
- •1.3.3Типы операционных систем
- •Структура сетевой ос.
- •Структура распределенной ос.
- •2Управление процессами
- •2.1Основные концепции
- •2.1.1Модели операционных систем
- •2.1.2Типы процессов
- •Типы процессов: однонитевая (а) и многонитевая (б) организации.
- •2.1.3Контекст процесса
- •2.2Реализация процессов в ос Unix
- •2.2.1Процесс ос Unix
- •Разделение сегмента кода.
- •2.2.2Базовые средства управления процессами в ос Unix
- •Пример использования системного вызова fork().
- •Пример использования системного вызова execl().
- •Пример использования схемы fork-exec.
- •2.2.3Жизненный цикл процесса. Состояния процесса
- •Жизненный цикл процессов.
- •2.2.4Формирование процессов 0 и 1
- •Формирование нулевого и первого процессов.
- •Инициализация системы.
- •2.3Планирование
- •2.4Взаимодействие процессов
- •2.4.1Разделяемые ресурсы и синхронизация доступа к ним
- •Гонка процессов.
- •Пример тупиковой ситуации (deadlock).
- •2.4.2Способы организации взаимного исключения
- •Пример двоичного семафора.
- •2.4.3Классические задачи синхронизации процессов
- •Обещающие философы.
- •3Реализация межпроцессного взаимодействия в ос Unix
- •3.1Базовые средства реализации взаимодействия процессов в ос Unix
- •Способы организации взаимодействия процессов.
- •3.1.1Сигналы
- •3.1.2Неименованные каналы
- •3.1.3Именованные каналы
- •3.1.4Модель межпроцессного взаимодействия «главный–подчиненный»
- •Общая схема трассировки процессов.
- •3.2Система межпроцессного взаимодействия ipc (Inter-Process Communication)
- •3.2.1Очередь сообщений ipc
- •Очередь сообщений ipc.
- •0666 Определяет права доступа */
- •3.2.2Разделяемая память ipc
- •3.2.3Массив семафоров ipc
- •Int val; /* значение одного семафора */
- •3.3Сокеты — унифицированный интерфейс программирования распределенных систем
- •4Файловые системы
- •4.1Основные концепции
- •4.1.1Структурная организация файлов
- •4.1.2Атрибуты файлов
- •4.1.3Основные правила работы с файлами. Типовые программные интерфейсы
- •Модель одноуровневой файловой системы.
- •Модель двухуровневой файловой системы.
- •Модель иерархической файловой системы.
- •4.1.4Подходы в практической реализации файловой системы
- •Структура «системного» диска.
- •4.1.5Модели реализации файлов
- •Модель непрерывных файлов.
- •Модель файлов, имеющих организацию связанного списка.
- •4.1.6Модели реализации каталогов
- •Модели организации каталогов.
- •4.1.7Соответствие имени файла и его содержимого
- •Пример жесткой связи.
- •Пример символической связи.
- •4.1.8Координация использования пространства внешней памяти
- •4.1.9Квотирование пространства файловой системы
- •Квотирование пространства файловой системы.
- •4.1.10Надежность файловой системы
- •4.1.11Проверка целостности файловой системы
- •Проверка целостности файловой системы. Непротиворечивость файловой системы соблюдена.
- •Проверка целостности файловой системы. Зафиксирована пропажа блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование свободного блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование занятого блока.
- •Проверка целостности файловой системы. Контроль жестких связей.
- •4.2Примеры реализаций файловых систем
- •4.2.1Организация файловой системы ос Unix. Виды файлов. Права доступа
- •4.2.2Логическая структура каталогов
- •Логическая структура каталогов.
- •4.2.3Внутренняя организация файловой системы: модель версии System V
- •Структура файловой системы версии System V.
- •4.2.3.1Работа с массивами номеров свободных блоков
- •Работа с массивами номеров свободных блоков.
- •4.2.3.2Работа с массивом свободных индексных дескрипторов
- •4.2.3.3Индексные дескрипторы. Адресация блоков файла
- •Индексные дескрипторы.
- •Адресация блоков файла.
- •4.2.3.4Файл-каталог
- •Файл-каталог.
- •Установление связей.
- •4.2.3.5Достоинства и недостатки файловой системы модели System V
- •4.2.4Внутренняя организация файловой системы: модель версии Fast File System (ffs) bsd
- •Структура файловой системы версии ffs bsd.
- •4.2.4.1Стратегии размещения
- •Стратегия размещения последовательных блоков файлов.
- •4.2.4.2Внутренняя организация блоков
- •Внутренняя организация блоков (блоки выровнены по кратности).
- •4.2.4.3Выделение пространства для файла
- •Выделение пространства для файла.
- •4.2.4.4Структура каталога ffs
- •Структура каталога ffs bsd.
- •4.2.4.5Блокировка доступа к содержимому файла
- •5Управление оперативной памятью
- •5.1Одиночное непрерывное распределение
- •Одиночное непрерывное распределение.
- •5.2Распределение неперемещаемыми разделами
- •Распределение неперемещаемыми разделами.
- •5.3Распределение перемещаемыми разделами
- •Распределение перемещаемыми разделами.
- •5.4Страничное распределение
- •Страничное распределение.
- •Иерархическая организация таблицы страниц.
- •Использование хеш-таблиц.
- •Инвертированные таблицы страниц.
- •Замещение страниц. Алгоритм «Часы».
- •5.5Сегментное распределение
- •Сегментное распределение.
- •5.6Сегментно-страничное распределение
- •Сегментно-страничное распределение. Упрощенная модель Intel.
- •6Управление внешними устройствами
- •6.1Общие концепции
- •6.1.1Архитектура организации управления внешними устройствами
- •Модели управления внешними устройствами: непосредственное (а), синхронное/асинхронное (б), с использованием контроллера прямого доступа или процессора (канала) ввода-вывода.
- •6.1.2Программное управление внешними устройствами
- •Иерархия архитектуры программного управления внешними устройствами.
- •6.1.3Планирование дисковых обменов
- •Планирование дисковых обменов. Модель fifo.
- •Планирование дисковых обменов. Модель lifo.
- •Планирование дисковых обменов. Модель sstf.
- •Планирование дисковых обменов. Модель scan.
- •Планирование дисковых обменов. Модель c-scan.
- •6.1.4Raid-системы. Уровни raid
- •Raid 2. Избыточность с кодами Хэмминга (Hamming, исправляет одинарные и выявляет двойные ошибки).
- •Raid 3. Четность с чередующимися битами.
- •Raid 5. Распределенная четность (циклическое распределение четности).
- •6.2Работа с внешними устройствами в ос Unix
- •6.2.1Файлы устройств, драйверы
- •6.2.2Системные таблицы драйверов устройств
- •6.2.3Ситуации, вызывающие обращение к функциям драйвера
- •6.2.4Включение, удаление драйверов из системы
- •6.2.5Организация обмена данными с файлами
- •Организация обмена данными с файлами.
- •6.2.6Буферизация при блок-ориентированном обмене
- •6.2.7Борьба со сбоями
Пакетная обработка заданий.
Такой процесс продолжался до тех пор, пока все программы из пакета не будут выполнены. Развитие подобных управляющих программ послужило основой появлению первых прообразов операционных систем, которые в разных случаях назывались мониторными системами, супервизорами или диспетчерами.
Следующим этапом развития понятия операционная система стало появление компьютеров второго поколения, имевших аппаратную поддержку режима мультипрограммирования — режима, при котором одновременно находилась в обработке не одна, а несколько программ. При этом в каждый момент времени команды одной из обрабатываемых программ выполнялись процессором, другие выполняли обмен данными с внешними устройствами, третьи были готовы к выполнению процессором и ожидали своей очереди. В СССР представителем машин второго поколения, обеспечивавших поддержку мультипрограммной обработки, была вычислительная машина БЭСМ-6, созданная под руководством академика С.А.Лебедева. Для данного компьютера была разработана серия операционных систем, которые по своей структуре и основным функциям были достаточно близки к современным ОС (НД-69, НД-70, ОС ДУБНА, ДИСПАК, ОС ИПМ и др.). Прародительницей подавляющего большинства этих операционных систем была система под названием Д-68 (Диспетчер–68), разработанная под руководством Л.Н.Королева.
Развитие мультипрограммных систем, расширение спектра решаемых задач и существенное увеличение количества пользователей компьютеров потребовало развития «дружественности» интерфейсов между пользователем и системой. С точки зрения инструментальных средств программирования это развитие языков программирования и систем программирования, которое представимо в следующей эволюционной последовательности: система команд компьютера автокоды и ассемблеры языки программирования высокого уровня проблемно-ориентированные языки программирования (Рис. 2.).
Операционные системы также получили свое развитие в этот период времени: появились языки управления заданиями, которые позволяли пользователю до начала выполнения его программы сформировать набор требований по организации выполнения программы. Появились первые прообразы современных файловых систем — систем, позволяющих систематизировать и упростить способы хранения и доступа пользователей к данным, размещенным на внешних запоминающих устройствах, что позволило пользователю работать с данными во внешней памяти не в терминах физических устройств и координат местоположения данных на этих физических устройствах, а в терминах имен или адресов некоторых наборов данных. В связи с этим у пользователя появилась возможность абстрагироваться от знания особенностей и способов организации хранения и доступа к данным конкретных физических устройств, что во многом послужило основой для появления виртуальных устройств.
Развитие языков и систем программирования.
Компьютеры третьего поколения: конец 60-х — начало 70-х годов ХХ века. Основным отличием компьютеров этого поколения было использование в качестве элементной базы интегральных схем, что определило увеличение производительности компьютеров, существенное снижение их размеров, веса, появление новых, высокопроизводительных внешних устройств. И, наверное, главной особенностью архитектуры компьютеров третьего поколения было начало аппаратной унификации их узлов и устройств, позволившей стимулировать создание семейств компьютеров, аппаратная комплектация которых могла достаточно просто варьироваться владельцем компьютера. Наиболее яркими представителями таких семейств были компьютеры серий IBM-360 фирмы IBM и семейство малых компьютеров PDP-11 фирмы DEC. Компьютеры первых двух поколений строились, как единые, аппаратно-целостные устройства, комплектация и возможности которых были существенно предопределены на этапе их производства. Их аппаратная модификация, обычно, была крайне затруднительна. Третье поколение компьютеров строилось на модульном принципе, что позволяло, при необходимости, осуществлять замену и расширение состава внешних устройств, увеличивать размеры оперативной памяти, заменять процессор на более производительный. Все это повлияло и на развитие и структуру операционных систем, которые вслед за аппаратурой приобрели модульную организацию с унификацией межмодульных интерфейсов. В операционных системах появились специальные программы управления устройствами — драйверы устройств, которые имели стандартные интерфейсы, позволявшие при аппаратной модификации компьютера достаточно просто обеспечивать программный доступ к новым или модифицированным устройствам. Кроме того, для обеспечения простоты и «дружественности» общения пользователя с различными устройствами компьютера появились виртуальные устройства, драйверы которых предоставляли пользователю набор единых правил работы с группой внешних устройств, что позволило создавать программы, не зависящие от типов используемых внешних устройств. Операционные системы компьютеров третьего поколения предоставляли новые режимы использования компьютеров, одним из таких режимов был диалоговый режим доступа к компьютеру. Вершиной идей, заложенных в операционные системы компьютеров третьего поколения, стала операционная система Unix, которая открыла направление развития комплексной стандартизации пользовательских интерфейсов, как на уровне интерфейсов командных языков, так и на различных уровнях программных интерфейсов от правил взаимодействия с драйверами устройств до интерфейсов с прикладными системами.
Завершение формирования сегодняшнего понятия операционной системы может быть связано с появлением четвертого и последующих поколений компьютеров, в построении которых использовалась элементная база, основанная на больших интегральных схемах. Компьютеры четвертого поколения, в первую очередь, ассоциируются с персональными компьютерами, совершившими в полном смысле слова революцию в массовом распространении информационных технологий. Компьютер из инструмента прикладного программиста стал повседневным, массово распространенным и доступным оборудованием. В связи с этим возник целый ряд проблем, решение которых потребовалось в операционных системах. В первую очередь это совершенствование «дружественности» пользовательских интерфейсов, упрощающих взаимодействие пользователя и операционной системы. Здесь лидирующую позицию занимают операционные системы компании Microsoft, которые в полном смысле слова совершили революцию в обеспечении массовости освоения компьютера. Активное развитие получили сетевые технологии, что привело к появлению сетевых и распределенных операционных систем. В этот период времени наибольшее развитие получила всемирная сеть Internet. В свою очередь возникли задачи обеспечения операционными системами безопасности хранения и передачи данных.