
- •1 Кодирование сигналов
- •1.1 Основные понятия
- •1.2 Система передачи дискретных сообщений
- •1.3 Сжатие данных
- •1.4 Кодирование словаря
- •1.5 Неравномерное кодирование
- •2 Помехоустойчивое (корректирующее) кодирование
- •2.1Оосновные понятия
- •2.2 Классификация помехоустойчивых кодов
- •2.3 Код с постоянным весом
- •3 Систематические линейные блочные коды (слбк)
- •3.1 Основные понятия
- •3.2 Кодирование информации
- •3.3 Код с четным числом единиц
- •3.4 Коды хэмминга
- •4 Циклические коды
- •4.1 Основные понятия
- •4.2 Кодирование информации
- •4.3 Кодирующие устройства
- •5 Декодирование линейных кодов
- •5.1 Декодирование по максимуму правдоподобия
- •5.2 Мажоритарное декодирование
- •5.3 Декодирование по синдрому
- •6 Непрерывные (рекуррентные) коды
- •6.1 Общие сведения
- •6.2 Цепной код
- •6.3 Сверточные коды (ск)
- •7 Генераторы с внешним возбуждением
- •7.1 Классификация генераторов
- •7.2 Использование гвв для умножения частоты
- •7.3 Метод отсечки
- •7.4 Импульсный метод
- •7.5 Радиоимпульсный метод
- •8.1 Электрическая структурная схема аг
- •8.2 Процесс возбуждения колебаний в аг
- •8.3 Энергетическое равновесие в аг
- •9 Режимы работы и возбуждения аг
- •9.1 Комплексное уравнение аг
- •9.2 Условие баланса амплитуд
- •9.3 Условие баланса фаз
- •9.4 Режим мягкого самовозбуждения аг
- •9.5 Режим жесткого самовозбуждения
- •10 Устойчивость работы аг
- •10.1 Колебательные характеристики
- •10.2 Линии обратной связи
- •10.3 Определение стационарной амплитуды колебаний
- •10.4 Lc автогенератор с автоматическим смещением
- •11 Трехточечные lc-автогенераторы
- •11.1 Обобщенная трехточечная схема
- •11.2 Генератор с автотрансформаторной обратной связью
- •11.3 Автогенератор с емкостной обратной связью
- •12 Стабилизация частоты lc-генераторов
- •12.1 Общие сведения
- •12.2 Причины нестабильности частоты
- •12.3 Методы стабилизации частоты:
- •12.4 Кварцевая стабилизация частоты
- •13.1 Цепочный rc-автогенератор
- •14 Формирование двухполосных ам сигналов
- •14.1 Общие сведения
- •14.2 Однотактные модуляторы
- •14.2 Балансный (двухтактный) модулятор
- •15 Формирование однополосных ам сигналов
- •15.1 Методы формирования ом сигнала
- •16 Формирование чм и фм сигналов
- •16.1 Прямой метод чм
- •16.2 Прямой метод фм
- •16.3 Косвенный метод чм
- •16.4 Косвенный метод фм
- •17 Преобразование частоты
- •17.1 Применение преобразования частоты
- •17.2 Принцип преобразования частоты
- •17.3 Схемное построение преобразователей частоты и их виды
- •17.4 Транзисторный преобразователь частоты
- •18 Формирование импульсно-модулированных сигналов
- •18.1 Амплитудно-импульсная модуляция
- •18.2 Частотно-импульсная модуляция
- •18.3 Широтно-импульсная и фазо-импульсная модуляция
- •19 Формирование манипулированных сигналов
- •19.1 Общие сведения
- •19.2 Формирование офм
- •20 Некогерентное детектирование ам сигналов
- •20.1 Общие сведения
- •20.2 Квадратичный диодный ад
- •21 Синхронное (когерентное) детектирование ам сигналов
- •22 Детектирование чм сигналов
- •22.1 Принцип работы частотных детекторов
- •22.2 Частотно-амплитудные детекторы
- •23 Детектирование фм сигналов
- •23.1 Однотактный диодный фд
- •23.2 Балансный диодный фд
- •24 Детектирование манипулированных сигналов
- •25 Детектирование импульсно-модулированных (им) и декодирование цифровых сигналов
- •25.1 Детектирование им сигналов
- •25.2 Декодирование цифровых сигналов
- •26 Помехоустойчивость приема сигналов
- •26.1 Основные понятия
- •26.2 Количественная мера пу
- •26.3 Группы методов повышения пу систем связи
- •27 Оптимальный прием сигналов
- •27.1 Общие сведения
- •27.2 Некогерентный прием
- •27.3 Неоптимальный прием
6 Непрерывные (рекуррентные) коды
6.1 Общие сведения
Непрерывные коды используют непрерывную обработку информации короткими фрагментами. Кодер для непрерывного кода обладает памятью, т.е. символы на его выходе зависят не только от очередного фрагмента информационных символов на входе, но и предыдущих символов на его входе и (или) выходе. Поэтому коды называются рекуррентными (recur – возвращаться, повторяться).
Эти коды применяют
для обнаружения и исправления пакетов
ошибок. Пакет ошибок – ошибка, затрагивающая
цепочку символов. Описывается длиной
и вектором ошибок
.
Пример 6.1:
Пакеты ошибок длиной 4 могут быть такими:
К непрерывным кодам относят цепной и сверточные. Цепной код является простейшим случаем сверточных.
6.2 Цепной код
В таком коде после каждого информационного символа следует проверочный. Закодированная последовательность имеет вид:
где
- шаг сложения. Определяет корректирующие
возможности кода;
- информационные
символы;
- проверочные
символы. Формируются по правилу:
Код позволяет
исправить пачки ошибок длиной
,
если они разделены защитным интервалом
.
6.3 Сверточные коды (ск)
Это линейные, рекуррентные коды. Название обусловлено тем, что кодирование информации СК представляет собой операцию свертки двух функций:
где
- входная последовательность информационных
символов;
- номер входа;
- выходная
последовательность кодовых символов;
- номер выхода;
- порождающий
полином.
Набор порождающих полиномов определяет внутреннюю конструкцию кодера.
Рисунок 6.1 – Обобщенная структурная схема кодера СК.
Кодирующее
устройство содержит
регистров сдвига и сумматоры по модулю
два. Количество двоичных разрядов
-ого
регистра сдвига определяется старшей
степенью полинома
.
Коэффициенты полинома
определяют связи между двоичными
разрядами
-ого
регистра сдвига и
-ым
выходом кодера.
На практике чаще
используются коды с единственным входным
потоком (
)
поэтому индекс
обычно опускается.
Пример 6.2:
Рисунок 6.2 –
Структурная схема кодера несистематического
СК с
и
.
7 Генераторы с внешним возбуждением
Генератор (от лат. – производитель) – устройство, преобразующее энергию источника питания в энергию электрических колебаний требуемой формы, частоты и мощности.
7.1 Классификация генераторов
1) По способу возбуждения различают генераторы с внешним возбуждением (ГВВ) и автогенераторы (АГ).
ГВВ – устройство, работающее в вынужденном режиме, т.е. колебания на его выходе наблюдаются только при наличии колебаний от внешнего источника на его входе. ГВВ предназначены для усиления мощности, умножения частоты колебаний, осуществления АМ и ЧМ.
АГ – устройство, работающее в автоколебательном режиме, т.е. колебания на его выходе возникают без внешнего источника сигнала. Являются первоисточниками электрических сигналов различной формы.
2) По форме генерируемых колебаний различают АГ гармонических и негармонических (релаксационных или импульсных) колебаний.
Гармонические колебания формируются в процессе плавного обмена энергиями между магнитным и электрическим полями, концентрирующимися в катушке индуктивности и конденсаторе. Используются в радиотехнических и измерительных устройствах.
Релаксационные колебания формируются в результате накопления энергии в поле реактивного элемента с последующей отдачей ее резистору, где она безвозвратно переходит в тепло (рассеивается). Используются в импульсной и цифровой технике.
3) По частоте генерируемых колебаний различают инфранизкочастотные (менее 10 Гц), низкочастотные (от 10 Гц до 100 кГц), высокочастотные (от 100 кГц до 100 МГц) и сверхвысокочастотные (свыше 100 МГц) генераторы.
4) По выходной мощности различают маломощные (менее 1 Вт), средней мощности (ниже 100 Вт) и мощные (свыше 100 Вт) генераторы.
5) По типу используемых активных элементов различают генераторы ламповые, транзисторные, на операционных усилителях, на туннельных диодах, на динисторах.
6) По
виду частотно-избирательной цепи
различают
генераторы
-,
-
и
-типа.
7) По виду обратной связи различают генераторы с внутренней (с отрицательным сопротивлением) и с внешней (специально созданной) обратной связью.
8) По схеме питания различают генераторы последовательного (транзистор и колебательный контур включены последовательно по отношению к источнику питания) и параллельного (транзистор и колебательный контур включены параллельно по отношению к источнику питания) питания.
9) По способу подключения нагрузки (по числу точек, в которых колебательный контур соединен с активным элементом) различают двухточечные и трехточечные генераторы.