
- •Лабораторная работа № 1
- •Цель работы.
- •Принадлежности.
- •Формула линзы.
- •5. Оптические системы.
- •6. Аберрации.
- •7. Ход работы.
- •8. Контрольные вопросы.
- •9. Задачи по теме.
- •Лабораторная работа № 2
- •Изучение микроскопа и рефрактометра. Определение показателя преломления стеклянной пластинки и жидкости
- •Цель работы.
- •2. Микроскоп, его устройство.
- •3. Показатель преломления.
- •4. Рефрактометр.
- •5. Дисперсия света.
- •6. Ход работы
- •7. Контрольные вопросы.
- •8. Задачи по теме.
- •Лабораторная работа № 3
- •Определение радиуса кривизны стеклянной линзы по кольцам Ньютона
- •Цель работы.
- •3. Необходимые предварительные знания.
- •4. Кольца Ньютона
- •5. Интерференция в тонком клине.
- •6. Ход работы.
- •7. Обработка экспериментальных данных.
- •8. Контрольные вопросы.
- •9. Задачи по теме.
- •Лабораторная работа № 4
- •Изучение интерференции света в плоскопараллельной пластине. Определение показателя преломления пластины
- •1. Цель работы.
- •2. Введение в волновую оптику.
- •3. Методы наблюдения интерференции
- •4. Когерентность.
- •5 . Интерференция света от плоскопараллельной пластинки.
- •6. Ход работы.
- •7. Обработка результатов.
- •Лабораторная работа № 5
- •Изучение дифракции света на одной щели
- •1. Цель работы.
- •2. Принцип Гюйгенса-Френеля.
- •3. Дифракции света на щели.
- •4. Ход работы.
- •5. Обработка результатов.
- •6. Контрольные вопросы
- •7. Задачи по теме.
- •Лабораторная работа № 6
- •Определение характеристик лазерного диска по дифракционной картине
- •1. Цель работы.
- •2. Двоичная система исчисления.
- •3. Принцип записи и хранения информации на cd.
- •4. Лазерная головка.
- •5. Лазерная запись.
- •6. Теория метода измерения плотности записи.
- •7. Методика проведения измерений.
- •8. Ход работы.
- •9. Контрольные вопросы.
- •10. Задачи по теме.
- •Лабораторная работа № 7
- •Определение показателя преломления призмы с помощью оптического гониометра
- •1. Цель работы.
- •2. Назначение гониометра и принцип его работы.
- •3. Назначение и принцип действия коллиматора.
- •4. Назначение и принцип работы зрительной трубы.
- •5 . Работа коллиматора совместно со зрительной трубой.
- •6. Назначение и принцип работы автоколлиматора.
- •7. Методика измерения углов на гониометре.
- •8. Измерение углов призмы методом отражения.
- •9. Автоколлимационный метод измерения углов призмы.
- •1 0. Устройство гониометра.
- •11. Правила снятия отсчёта на гониометре.
- •12. Подготовка гониометра к работе.
- •13. Порядок проведения измерений и оформления результатов.
- •14. Контрольные вопросы.
- •Лабораторная работа № 8
- •Изучение вращения плоскости поляризации оптически активных жидкостей с помощью сахариметра
- •1. Цель работы.
- •2. Поляризация.
- •3. Описание установки.
- •4. Примеры отсчета показаний по нониусу.
- •5. Правила пользования поляриметрическими кюветами.
- •6. Ход работы.
- •7. Контрольные вопросы.
- •Лабораторная работа № 9
- •Исследование явления Фарадея и определение постоянной Верде для водного раствора сахара
- •1. Цель работы.
- •2. Явление поляризации.
- •3. Ход работы.
- •4. Контрольные вопросы.
- •5. Задачи по теме.
- •Лабораторная работа № 10
- •Калибровка монохроматора. Изучение спектров испускания Hg и Na
- •Цель работы.
- •Понятие «спектральный анализ», классификация его типов.
- •Виды спектров испускания.
- •4. Спектр атома водорода.
- •5. Постулаты Бора.
- •6. Калибровка монохроматора.
- •Определение длин волн спектра натрия.
- •8. Контрольные вопросы.
- •9. Задачи по теме.
- •Лабораторная работа № 11
- •Изучение спектров поглощения интерференционных светофильтров с помощью спектрофотометра
- •1. Цель работы.
- •2. Основные характеристики светофильтров.
- •3. Устройство интерференционного светофильтра.
- •4. Спектральные приборы.
- •5. Оптическая схема и принцип работы спектрофотометра.
- •6. Ход работы.
- •7. Содержание отчета.
- •8. Контрольные вопросы.
- •Лабораторная работа № 12
- •Определение концентрации растворов с помощью кфк
- •1. Цель работы.
- •2. Назначение и технические данные.
- •3. Принцип действия.
- •4. Порядок действий при определении концентрации вещества в растворе.
- •5. Ход работы.
- •5.Контрольные вопросы.
- •Лабораторная работа № 13
- •1. Цель работы.
- •9. Контрольные вопросы.
- •10. Задачи по теме.
- •2. Доза ионизирующего излучения и единицы измерения.
- •3. Дозиметрические приборы.
- •4. Газонаполненные детекторы.
- •5. Контрольные вопросы.
- •Лабораторная работа № 15
- •Определение температуры черного тела при помощи пирометра
- •1.Цель работы.
- •2. Определение и назначение пирометра.
- •3. Классификация пирометров.
- •4. Применение пирометров.
- •5. Принцип действия пирометров.
- •8. Контрольные вопросы.
- •9. Задачи по теме.
3. Дозиметрические приборы.
Дозиметрические приборы – дозиметры, устройства, предназначенные для измерения доз ионизирующих излучений или величин, связанных с дозами. Они могут служить для измерения доз одного вида излучения (-дозиметры, нейтронные дозиметры и т. д.) или смешанного излучения. Дозиметрические приборы для измерения экспозиционных доз рентгеновского и -излучений обычно градуируют в рентгенах и называются рентгенметрами. Приборы для измерения эквивалентной дозы, характеризующей степень радиационной опасности, иногда градуируют в бэрах и их часто называют бэрметрами. Радиометрами измеряют активности или концентрацию радиоактивных веществ.
Счетчик Гейгера
(или счётчик Гейгера-Мюллера)
газонаполненный счётчик заряженных
элементарных частиц, электрический
сигнал с которого усилен за счёт вторичной
ионизации газового объёма счётчика и
не зависит от энергии, оставленной
частицей в этом объёме. Изобретён в 1908
году Х.Гейгером и Э.Резерфордом, позднее
усовершенствован Гейгером и Мюллером.
Конструктивно счётчик Гейгера устроен
так же, как пропорциональный счётчик,
т.е. представляет собой цилиндрический
конденсатор, заполненный инертным
газом. К внутреннему электроду (тонкой
металлической нити) приложен положительный
потенциал, к внешнему – отрицательный.
Функционально счётчик Гейгера так же,
в основном, повторяет пропорциональный
счётчик, но отличается от последнего
тем, что за счёт более высокой разности
потенциалов на электродах работает в
таком режиме, когда достаточно появления
в объёме детектора одного электрона,
чтобы развился мощный лавинообразный
процесс, обусловленный вторичной
ионизацией, который способен ионизовать
всю область вблизи нити-анода. При этом
импульс тока достигает предельного
значения (насыщается) и не зависит от
первичной ионизации. По существу, при
попадании в счетчик Гейгера частицы в
нём вспыхивает (зажигается) самостоятельный
газовый разряд. При этом коэффициент
газового усиления может достигать 1010,
а величина импульса десятков вольт.
Этот счётчик обладает практически
стопроцентной вероятностью регистрации
заряженной частицы, так как для
возникновения разряда достаточно одной
электрон-ионной пары. Однако длительность
сигнала со счётчика Гейгера сравнительно
велика (
10-4
с). Именно такое время требуется,
чтобы медленные положительные ионы,
заполнившие пространство вблизи
нити-анода после пролёта частицы и
прохождения электронной лавины, ушли
к катоду и восстановилась чувствительность
детектора.
Сцинтилляционный счётчик – прибор для регистрации ядерных излучений и элементарных частиц (протонов, нейтронов, электронов, -квантов, мезонов и т. д.), основными элементами которого являются вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор), и фотоэлектрический умножитель (ФЭУ). Визуальные наблюдения световых вспышек (сцинтилляций) под действием ионизирующих частиц (α-частиц, осколков деления ядер) были основным методом ядерной физики в начале XX века. Позднее этот счетчик был полностью вытеснен ионизационными камерами и пропорциональными счетчиками. Его возвращение в ядерную физику произошло в конце 1940-х гг., когда для регистрации сцинтилляций были использованы многокаскадные ФЭУ с большим коэффициентом усиления, способные зарегистрировать чрезвычайно слабые световые вспышки.
Принцип действия сцинтилляционного счётчика состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул, возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны. Фотоны, попадая на катод ФЭУ, выбивают электроны, в результате чего на аноде ФЭУ возникает электрический импульс, который далее усиливается и регистрируется. Детектирование нейтральных частиц (нейтронов, γ-квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и γ-квантов с атомами сцинтиллятора.