
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Транспонированная матрица
С каждой матрицей A = (aij)
размера
связана
матрица B = (bij) размера
вида
Такая матрица называется транспонированной матрицей для A и обозначается так AT. Транспонированную матрицу можно получить, поменяв строки и столбцы матрицы местами. Матрица A = (aij) размера при этом преобразовании станет матрицей размерностью .
Умножение матрицы на число
Умножение матрицы A на число λ (обозначение: λA) заключается в построении матрицы B, элементы которой получены путём умножения каждого элемента матрицы A на это число, то есть каждый элемент матрицы B равен
Свойства умножения матриц на число
1. 1*A = A;
2. (Λβ)A = Λ(βA)
3. (Λ+β)A = ΛA + βA
4. Λ(A+B) = ΛA + ΛB
Сложение матриц
Сложение матриц A + B есть операция нахождения матрицы C, все элементы которой равны попарной сумме всех соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен
Свойства сложения матриц
5.коммутативность;
6.ассоциативность;
7.сложение с нулевой матрицей;
8.существование противоположной матрицы;
Все свойства линейных операций повторяют аксиомы линейного пространства и поэтому справедлива теорема:
Множество всех матриц одинаковых размеров MxN образуют линейное пространство над полем P(полем всех действительных или комплексных чисел), поэтому каждая матрица является и вектором этого пространства.
Умножение матриц
Умножение
матриц (обозначение: AB,
реже со знаком умножения
) —
есть операция вычисления матрицы C,
элементы которой равны сумме произведений
элементов в соответствующей строке
первого множителя и столбце второго.
Количество столбцов в матрице A
должно совпадать с количеством строк
в матрице B. Если матрица A имеет
размерность
,
B —
,
то размерность их произведения AB =
C есть
.
Свойства умножения матриц
1.Ассоциативность;
2.произведение не коммутативно;
3.произведение коммутативно в случае умножения с единичной матрицей;
4.справедливость дистрибутивного закона;
5.(ΛA)B = Λ(AB) = A(ΛB);
Ранг матрицы
Количество линейно независимых строк матрицы называют строчным рангом матрицы, а количество линейно независимых столбцов матрицы называют столбцовым рангом матрицы. В действительности, оба ранга совпадают. Их общее значение и называется рангом матрицы.
Другой эквивалентный данному подход заключается в определении ранга матрицы, как максимального порядка отличного от нуля минора матрицы.
ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ, ДЕТЕРМИНАНТ [determinant] — число, соответствующее квадратной матрице и полученное путем ее преобразования по определенному правилу. Обычное обозначение (для матрицы A): det A. Напр., определитель (второго порядка) матрицы
обозначается
и вычисляется следующим образом:
det A = a11a22 — a12a21.
В общем случае (для квадратной матрицы порядка n) из элементов матрицы A сначала составляют все возможные произведения из n сомножителей каждое, содержащие по одному элементу из каждой строки и по одному элементу из каждого столбца, затем эти произведения складываются по определенному правилу.
Определитель матрицы, в которой вычеркнуты произвольная строка (напр. i-я), и произвольный столбец (напр. j-й), называется минором. Он имеет (n – 1)-й порядок, т. е. порядок на 1 меньше, нежели исходный определитель.