
- •Гидравлика
- •Оглавление
- •Сведения из истории гидравлики в пгупс.
- •1 Введение в гидравлику
- •1.1 Определение науки «Гидравлика».
- •1.2 Жидкость.
- •1.3. Понятия реальной и идеальной жидкости. Вязкость.
- •1.4. Основные физические свойства реальных жидкостей.
- •1.4.1. Плотность жидкости ρ, вес единицы объёма γ.
- •1.4.2. Сжимаемость жидкости.
- •1.4.3. Расширение жидкости в связи с изменением температуры.
- •1.4.4. Сопротивление жидкости растягивающим усилиям.
- •1.5. Силы, действующие на жидкость. Напряженное состояние жидкости.
- •Гидростатика.
- •1.6. Гидростатическое давление и его свойства.
- •1.7. Дифференциальные уравнения покоя жидкости.
- •1.8 Интегрирование дифференциальных уравнений покоя (равновесия) жидкости.
- •1.9 Величина гидростатического давления в случае жидкости, находящейся под действием только одной объёмной силы – силы тяжести.
- •1.10 Вакуум
- •1.11 Статика газов
- •1.11.1 Уравнения состояния газов
- •1.11.2 Распределение давления газа по высоте
- •1.11.3 Распределение температуры газа по высоте
- •1.12 Относительный покой жидкости.
- •1.12.1 Свободная поверхность жидкости при равноускоренном или равнозамедленном прямолинейном движении.
- •1.12.2 Определение величины гидростатического давления.
- •1.13 Сила гидростатического давления, действующая на плоскую фигуру любой формы.
- •1.13.1 Сила pа
- •1.13.2. Положение центра давления.
- •1.14 Сила гидростатического давления, действующая на плоские прямоугольные фигуры.
- •1.15 Сила гидростатического давления, действующая на цилиндрические поверхности.
- •1.15.1 Первый случай цилиндрической поверхности.
- •1.15.2 Второй случай цилиндрической поверхности (вертикаль cc’ лежит внутри жидкости).
- •1.15.3 Третий случай цилиндрической поверхности.
- •1.16 Равновесие плавающих тел. Закон Архимеда.
- •1.17 Плавучесть тела и условия её обеспечения.
- •1.18 Остойчивость плавающего тела.
- •2. Основы технической гидродинамики.
- •2.1 Линия тока
- •2.2 Параллельноструйное, плавно изменяющееся и резко изменяющееся движения жидкости. Живое сечение, расход, средняя скорость и эпюра скоростей.
- •2.3 Неравномерное и равномерное, напорное и безнапорное движения жидкости.
- •2.4.1 Случай резко изменяющегося движения жидкости.
- •2.4.2. Случай плавно изменяющегося и параллельноструйного движений жидкости.
- •2.4.3 Уравнение неразрывности для газов
- •2.5 Уравнения Эйлера движения невязкой (идеальной) жидкости.
- •2.6 Интеграл Бернулли.
- •2.7 Уравнение Бернулли для идеальной несжимаемой жидкости.
- •2.8. О распределении давления в живых сечениях потока при параллельноструйном и плавно изменяющемся движениях жидкости.
- •2.9.1 Влияние неравномерности распределения скоростей u по плоскому живому сечению на количество движения (кд) массы м.
- •2.9.2. Влияние неравномерности распределения скоростей u по плоскому живому сечению на кинетическую энергию (кэ) массы м.
- •2.10 Уравнение Бернулли для целого потока реальной (вязкой) жидкости при установившемся движении.
- •2.11 Уравнение Бернулли для газов.
- •2.12 Гидравлическое уравнение количества движения для установившегося движения реальной жидкости.
- •2.13 Два режима движения реальной жидкости.
- •3. Потери напора при установившемся движении жидкости.
- •3.1 Общие указания о потерях напора. Гидравлические сопротивления.
- •3.2 Основное уравнение установившегося равномерного движения жидкости для «правильных» русел. Работа сил внутреннего трения.
- •3.3 Законы внутреннего трения в жидкости. Величина касательных напряжений трения при ламинарном движении жидкости.
- •3.4 Распределение скоростей u по живому сечению при ламинарном равномерном установившемся движении жидкости.
- •3.5 Формула Пуазейля для расхода q в круглоцилиндрической трубе. Потеря напора по длине при ламинарном равномерном установившемся движении жидкости.
- •3.6 Уравнения Навье-Стокса движения вязкой жидкости.
- •3.7 Пример точного решения уравнений Навье-Стокса.
- •4 Уравнения Рейнольдса.
- •4.1 Принципы осреднения актуальных (истинных) движений при турбулентном режиме. Пульсационные добавки.
- •4.2 Уравнения движения при турбулентном режиме потока.
- •5 Потеря напора при установившемся равномерном движении жидкости.
- •5.1 Коэффициент гидравлического трения.
- •5.2 Потери напора по длине при турбулентном установившемся равномерном движении жидкости для квадратичной области сопротивления.
- •6 Местные потери напора при турбулентном напорном установившемся движении жидкости.
- •6.1 Потери напора при резком расширении напорного трубопровода (формула Борда).
- •6.2 Остальные случаи местных потерь напора. Общая формула Вейсбаха.
- •6.3 Гидравлический расчет коротких трубопроводов.
- •6.4 Всасывающая труба насоса.
- •6.5 Гидравлический расчет длинных трубопроводов.
- •6.6 Расчёт трубопроводов для газов.
- •6.6.1 Расчет при малых перепадах давления.
- •6.6.2 Расчёт газопроводов при больших перепадах давления.
- •6.6.3 Гидравлический расчёт вытяжной дымовой трубы.
- •6.7 Понятие о гидравлическом ударе в трубопроводах
- •7 Истечение жидкости из отверстий и насадков.
- •7.1 Истечение из малого отверстия в атмосферу при постоянном напоре.
- •7.2 Траектория струи.
- •6.3 Истечение жидкости из насадков при постоянном напоре.
- •6.3.1 Внешний круглоцилиндрический насадок (насадок Вентури).
- •6.3.2 Внутренний круглоцилиндрический насадок (насадок Борда).
- •7.4 Истечение жидкости из отверстия в атмосферу при переменном напоре.
- •8 Равномерное безнапорное установившееся движение воды в открытых каналах.
- •8.1 Гидравлические элементы живого сечения потока в канале.
- •8.2 Гидравлически наивыгоднейший поперечный профиль трапецеидального канала.
- •8.3 Основные задачи при расчёте трапецеидальных каналов на равномерное движение.
- •8.4 Ограничение скоростей движения воды при расчёте каналов. Перепады.
- •1. Мероприятия по увеличению скорости .
- •2. Мероприятия по уменьшению скорости .
- •8.5 Расчёт каналов, имеющих замкнутый поперечный профиль.
- •1. Канализационные трубы.
- •9 Неравномерное безнапорное установившееся движение воды в каналах и естественных руслах.
- •9.1 Предварительные указания.
- •9.2 Основное дифференциальное уравнение неравномерного движения воды.
- •9.3 Второй вид дифференциального уравнения неравномерного движения воды.
- •9.4 Второй вид дифференциального уравнения неравномерного движения воды для случая цилиндрических русел.
- •9.5 Четыре вспомогательных понятия: удельная энергия сечения, критическая глубина, нормальная глубина, критический уклон.
- •9.6 Спокойное, бурное и критическое состояния потока.
- •9.7. Исследование форм (видов) кривой свободной поверхности потока в случае неравномерного плавно изменяющегося движения воды в цилиндрическом русле.
- •9.8 Построение кривой свободной поверхности потока по уравнению Бернулли методом конечных разностей (способ Чарномского)
- •10 Гидравлический прыжок и послепрыжковый участок.
- •10.1 Общие указания. Послепрыжковый участок.
- •10.2 Основное уравнение гидравлического прыжка.
- •10.3 Прыжковая функция. Определение одной из сопряжённых глубин по заданной другой сопряжённой глубине.
- •10.4 Основное уравнение прыжка в прямоугольном цилиндрическом русле.
- •10.5 Длина свободного прыжка в прямоугольном горизонтальном русле. Потери энергии в прыжке.
- •10.6 Особые виды гидравлического прыжка.
- •11 Водосливы
- •11.1 Терминология и классификация водосливов
- •11.2 Основная расчётная формула для прямоугольного водослива
- •11.3 Свободное истечение через неподтопленный прямоугольный водослив с вертикальной стенкой
- •11.4. Неподтопленный водослив с широким порогом
- •11.5 Критерий подтопления водослива с широким порогом
- •12 Сопряжение бьефов при устройстве плотин
- •12.1 Типы сопряжения бьефов
- •12.2. Гасители энергии потока
- •13. Плавно изменяющееся установившееся безнапорное движение грунтовой воды
- •13.1 Основные понятия
- •13.2 Ламинарная и турбулентная фильтрация
- •Значения коэффициента формы частиц крупнозернистых материалов
- •Величина коэффициента c0
- •13.3 Формула Дарси
- •13.4 Основное уравнение плавно изменяющегося безнапорного движения грунтовой воды (формула Дюпюи)
- •13.5 Определение коэффициента фильтрации в лабораторных условиях
- •13.6 Дифференциальное уравнение неравномерного плавно изменяющегося движения грунтовых вод в цилиндрическом русле
- •13.7 Интегрирование дифференциального уравнения неравномерного плавно изменяющегося движения грунтовой воды
- •13.8 Приток воды к совершенной водосборной галерее
- •Величины Jср среднего уклона кривой депрессии
- •13.9 Приток грунтовой воды к круглому совершенному колодцу
- •13.10 Фильтрация воды через однородную земляную дамбу
- •14. Основы физического моделирования гидравлических явлений
- •14.1 Общие сведения
- •14.2 Понятие о подобии гидравлических явлений
- •14.3 Критерии динамического подобия
- •14.3.1 Случай, когда на жидкость действуют только силы тяжести
- •14.3.2 Случай, когда на жидкость действуют только силы трения (вязкости)
- •14.3.3 Критерии подобия, выраженные через среднюю скорость
- •.3.4 Общий случай, когда на жидкость одновременно действуют несколько разных систем сил
- •14.4 Основные указания для моделирования гидравлических явлений
- •Требуемое для достижения динамического подобия отношение характеристики модели к соответствующей характеристике натуры
- •14.5. Пересчет модельных данных на натуру
- •Приложение 1. Физические свойства сухого воздуха
- •Список литературы
8.1 Гидравлические элементы живого сечения потока в канале.
1. Симметричное трапецеидальное поперечное сечение.
В формулах b – ширина канала по дну; h – глубина наполнения канала; величина m, указанная на чертеже – коэффициент откоса:
где
угол
задают не по соображениям гидравлического
расчёта, а учитывая устойчивость грунта
откоса (если откосы канала образуются
нескальным грунтом). Ширина потока
поверху
Величины
живого сечения
и смоченного периметра χ
удобно вычислять по следующим
геометрическим зависимостям:
Зная
и χ
определяем величину R
Иногда при расчёте каналов пользуются понятием относительной ширины канала по дну
Величины
и χ
через
выражаются следующим образом:
2. Прямоугольное поперечное сечение.
Те же гидравлические элементы для прямоугольного поперечного сечения (рис. 8.4) выражаются следующими формулами:
В случае весьма широкого прямоугольного русла
8.2 Гидравлически наивыгоднейший поперечный профиль трапецеидального канала.
Предположим, что нам заданы: 1) форма поперечного сечения канала – трапецеидальная; 2) коэффициент откоса канала m = m0; 3) уклон дна канала i = i0; 4) коэффициент шероховатости n = n0; 5) расход Q = Q0.
Положим, что, исходя из этих данных, требуется запроектировать поперечный профиль канала (т.е. найти его размеры).
Такая задача имеет много решений. Можно наметить целый ряд различных поперечных профилей канала, удовлетворяющих указанным условиям (см. рис. 8.5 а); для этого чертежа имеем
(индексы относятся к вариантам канала)
Легко
видеть, что первый и последний варианты
будут характеризоваться относительно
большой поверхностью трения; поэтому
скорость
для крайних вариантов должна быть
относительно малой. Из сказанного
вытекает, что среди ряда рассматриваемых
вариантов имеется такой промежуточный,
для которого средняя скорость
оказывается максимальной
а
следовательно, площадь живого сечения
(равная
)
– минимальной
Поперечный
профиль, удовлетворяющий этим условиям
и является гидравлически наивыгоднейшим.
Как видно, гидравлически наивыгоднейшим
профилем трапецеидального канала
называется профиль, который (при заданных
m,
i,
n,
Q)
характеризуется максимально возможной
средней скоростью
,
а следовательно, минимальной площадью
живого сечения.
Обозначим
относительную ширину по дну гидравлически
наивыгоднейшего профиля через
При этом покажем всё сказанное кривыми
,
расположенными выше оси β.
Дополнительно
(ниже оси β)
показаны кривые, построенные в
предположении, что задано не Q
= const,
а
= const.
Из этих кривых видно, что гидравлически
наивыгоднейший профиль характеризуется
также наибольшей пропускной способностью.
Вертикаль
I
– II
на рис. 8.5 б отвечает минимумам и максимумам
соответствующих функций, а следовательно,
и величине
Рассматривая сплошные кривые графика,
расположенные выше оси β,
для определения величины
,
можем написать следующую систему двух
уравнений:
Отсюда
Стремясь
получить минимальную стоимость каналов,
откапываемых в грунте, их иногда
проектируют, соблюдая условие
,
т.к. при этом условии площадь живого
сечения оказывается минимальной. Надо,
однако, подчеркнуть, что в практике
достаточно часто и отступают от указанного
условия, причём проектируют каналы,
принимая иные значения
(
).
Такое положение объясняется тем, что
гидравлически наивыгоднейшие профили
далеко не всегда оказываются экономически
наивыгоднейшими. Действительно,
экономически наивыгоднейший профиль
канала должен характеризоваться
минимумом объёма земляных работ, а
следовательно, для канала, выполняемого
в выемке, минимальным значением площади
выемки
,
а не площади живого сечения
.
Дополнительно необходимо учитывать следующее важное обстоятельство.
Гидравлически
наивыгоднейшие каналы получаются
относительно глубокими; величина
для них оказывается сравнительно малой.
Такие глубокие каналы часто затруднительно
откапывать в грунте и эксплуатировать.
Вместе с тем можно показать, что кривая
,
схематично показанная на рис. 8.5 б,
является весьма пологой, то есть её
минимум выражен достаточно слабо.
Достаточно принять для проектируемого
канала площадь живого сечения равной
не
,
а, например,
(т.е. увеличить
всего на 3%), и мы при этом величину
получим относительно большой.
Таким
образом, можно ввести понятие практически
наивыгоднейшей величины
,
при которой
будет отличаться от
не более, чем на 3
4%,
причём каналы будут получаться
сравнительно малой глубины.