
- •Темы контрольных работ по дискретная математика
- •1. Эйлеровы графы .
- •2. Гамильтоновы графы.
- •1 Уилсон р. Дж. Введение в теорию графов. – м.: 1977.
- •3. Связность графа.
- •4. Циклы в графах.
- •1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- •5. Плоские графы.
- •1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- •2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- •3 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- •6. Деревья.
- •1) Изучить такие основополагающие понятия теории графов, как граф, маршрут и цикл (/1/, с. 9-43; /2/, с. 5-22).
- •7. Свойства эйлеровых графов.
- •8. Свойства гамильтоновых графов.
- •1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- •2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- •3 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- •9. Ориентированные графы.
- •1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- •2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- •3 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- •10. Паросочетания.
- •1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- •2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- •4 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- •11. Теория трансверсалей.
- •1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- •2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- •4 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- •12. Потоки в сетях.
- •1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- •2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- •4 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- •13. Производящие функции в теории графов.
- •14. Теорема Пойа и перечисление графов.
- •1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- •2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- •14. Графы на двумерных поверхностях.
- •1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
- •2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- •3 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
- •15. Конечные группы и их графы.
- •2 Оре о. Теория графов. – м.: Наука, 1968.
- •16. Теорема Рамсея и ее приложения.
- •2 Оре о. Теория графов. – м.: Наука, 1968.
- •17. Полугруппы преобразований.
- •18. Копредставления полугрупп.
- •19. Логика на словах.
- •20. Алгебры отношений и полугруппы преобразований.
- •21. Рациональные языки.
- •Тема 71. Соответствие Эйленберга
- •22. Отношения Грина.
- •23. Декомпозиция конечных моноидов.
- •24. Рациональные и алгебраические языки над полукольцами.
- •25. Элементы теории конечных автоматов.
- •1 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
- •26. Минимизация чистых автоматов.
- •27. Конструкции чистых автоматов.
- •28. Цифровое шифрование.
- •29. Последовательности над конечным полем.
- •30. Решетки.
4. Циклы в графах.
Во многих прикладных задачах важную роль играют свойства графов,
связанные с существованием в графе замкнутых маршрутов, называемых
циклами. В контрольной работе необходимо изучить основные свойства циклов в графах и проанализировать известную взаимосвязь пространства циклов графа с группами его цепей. Рекомендуется следующий план работы.
1) Изучить такие основополагающие понятия теории графов, как граф, маршрут и цикл (/1/, с. 9-43; /2/, с. 5-22).
2) Рассмотреть понятие цикломатического числа графа и доказать его
основные свойства (/1/, с. 59-61; /2/, с. 43-46).
3) Разобрать определение групп одномерных и нульмерных цепей графа и показать их взаимосвязь с пространством циклов графа (/2/, с. 46-55).
Литература, рекомендуемая для изучения темы
1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
2 Белов В.В., Воробьев Е.М., Шаталов В.Е. Теория графов. – М.: ВШ,
1976.
3 Березина Л.Ю. Графы и их применения: Пособие для учителей. – М.,
1979.
5. Плоские графы.
Понятие планарности играет принципиально важную роль в теории
графов и ее разнообразных приложениях. В контрольной работе необходимо изучить основные свойства планарных графов и доказать критерий Куратовского планарных графов и теорему Эйлера о плоских графах. Рекомендуется следующий план работы:
1) Изучить такие основополагающие понятия теории графов, как граф и его грани, планарный граф и плоский граф, гомеоморфизм и стягивание графа (/1/, с. 9-24, 74-81).
2) Доказать теорему Куратовского, которая дает простой критерий планарности графа (/1/, с. 77-80).
3) Доказать теорему Эйлера о плоских графах (/1/, § 13; /2/, с. 59-75).
Литература, рекомендуемая для изучения темы
1 Уилсон р. Введение в теорию графов. – м.: Мир, 1977.
2 Белов в.В., Воробьев е.М., Шаталов в.Е. Теория графов. – м.: вш,
1976.
3 Березина л.Ю. Графы и их применения: Пособие для учителей. – м.,
1979.
6. Деревья.
Деревьями называются связные графы без циклов. Такие графы играют
принципиально важную роль как в самой теории графов, так и в ее разнообразных приложениях. В контрольной работе необходимо изучить основные свойства деревьев, рассмотреть задачу перечисления деревьев и
проанализировать взаимосвязь деревьев с пространствами циклов графов.
Рекомендуется следующий план работы:
1) Изучить такие основополагающие понятия теории графов, как граф, маршрут и цикл (/1/, с. 9-43; /2/, с. 5-22).
2) Рассмотреть определение дерева и доказать теорему о его характеристических свойствах (/1/, с. 56-59; /2/, с.45-46).
3) Ввести понятие остовного леса графа и проанализировать его взаимосвязь с фундаментальной системой циклов исходного графа (/1/, с. 59-
61).
4) Разобрать задачу о перечислении деревьев и доказать известную теорему Кэли о числе помеченных деревьев (/1/, с. 62-66).
Литература, рекомендуемая для изучения темы
1 Уилсон Р. Введение в теорию графов. – М.: Мир, 1977.
2 Белов В.В., Воробьев Е.М., Шаталов В.Е. Теория графов. – М.: ВШ,
1976.
3 Березина Л.Ю. Графы и их применения: Пособие для учителей. – М.,
1979.
7. Свойства эйлеровых графов.
Одной из первых задач, приведших к возникновению теории графов, является известная задача Эйлера о кенигсбергских мостах. Решение этой задачи естественно привело к определению важного класса графов, называемых эйлеровыми. Цель контрольной работы - изучить основные свойства эйлеровых графов. Рекомендуется следующий план работы:
1) Изучить такие основополагающие понятия теории графов, как граф, маршрут и цикл (/1/, с. 9-43; /2/, с. 14-18).
2) Рассмотреть задачу Эйлера о кенигсбергских мостах, ввести определение эйлерова графа и доказать критерий эйлеровости графа (/1/, с. 43-45; /2/, с. 5-22).
3) Разобрать алгоритм Флери построения эйлеровой цепи в графе (/1/, с. 45-46).
Литература, рекомендуемая для изучения темы
1) Уилсон Р. Введение в теорию графов. – М.: Мир, 1977.
2) Белов В.В., Воробьев Е.М., Шаталов В.Е. Теория графов. – М.: ВШ,
1976.
3) Березина Л.Ю. Графы и их применения: Пособие для учителей. – М.,
1979.