
- •1. Биотоки. История открытия. 1-ый и 2-ой опыты Гальвани.
- •2. Мозжечок. Строение. Значение. Функции.
- •3. Структурная и функциональная организация нейронов в рефлекторной дуге.
- •4. Последствия повреждения спинного мозга на различных уровнях (знать центры).
- •5. Механизм возникновения пп с точки зрения ионно-мембранной теории.
- •6. Структура симпатической нс, ее физиологическое значение. Альфа и Бетта аденорецепторы. Их локализация.
- •7. Изменение возбудимости тканей в момент развития возбуждения. Рефрактерность. Экзальтация.
- •8. Ретикулярная формация. Локализация, значение, механизм возбуждения ретикулярной формации.
- •9. Законы проведения нервного возбуждения по нервным волокнам. Строение и функции бп мозга.
- •10. Торможение в цнс и его значение. Виды торможения.
- •11. Доли, извилины, борозды коры. Двигательные и чувствительные центры коры мозга.
- •12. Пд, его величина, фазы, механизм их возникновения с точки зрения ионно-мембранной теории.
- •13. Строение парасимпатической нс. Значение. N и м холинорецепторы.
- •14. Открытие Сеченовым центрального торможения.
- •15. Структура сердечно-сосудистого центра и взаимодействие между отделами центра.
- •16. Нейроглия. Защитная и трофическая функции в отношении нейронов.
- •17. Роль клеточной мембраны в поляризации, реполяризации, дегиперполяризации
- •18. Проводящие пути спинного мозга и их значение.
- •19. Вегетативная нс. Отделы. Отличие от соматической. Вегетативная рефлекторная дуга.
- •20. Рефлекс. Определяющее значение, свойства, классификации.
- •21. Рефлекторные центры среднего мозга (т.Е. Функции).
- •22. Виды нервных волокон, их строение, поляризация мембран. Свойства.
- •23. Вегетативные ганглии. Разновидности. Значение.
- •24. Нервные центры. Определяющее значение, свойства.
- •25. Физиологическая роль варолиева моста.
- •26. Доминанта, определяющее значение, свойства.
- •27. Средний мозг, отделы, функции.
- •28. Рефлекторная теория. Роль работ Сеченова и Павлова.
- •29. Роль красных ядер и черной субстанции среднего мозга.
- •30. Возбуждающий синапс. Механизм возникновения впсп (возбуждающего постсинаптического потенциала).
- •31. Функциональная система.
- •32. Механизм проведения нервного импульса по безмякотным нервным волокнам.
- •33. Вегетативные рефлексы и вегетативные рефлекторные дуги (Примеры, схемы дуг).
- •34.Рефлекторная дуга, ее элементы и характеристики
- •35. Отделы ствола мозга. Белое и серое вещество ствола. Локализация и значение.
- •36. Координация рефлекторной деятельности. Взаимоотношения между нервными центрами: иррадиация, взаимная индукция.
- •37. Цитоархитектоника коры головного мозга.
- •38. Механизм проведения возбуждения по мякотным нервным волокнам.
- •39. Оболочки мозга, кровоснабжение, состав, значение.
- •40. Синапс. Определение, значение, структура и классификация синапсов.
- •45. Продолговатый мозг. Его функции.
- •46. Возвратное и рецепторное торможение в спинном мозге.
- •47. Структура дыхательного центра и механизм возбуждения центра вдоха.
- •52. Возбудимость и возбуждение. Определение. Признаки возбуждения.
- •Возбудимость и лабильность - основные свойства высокоорганизованных тканей
- •53. Функции таламуса промежуточного мозга.
- •54. Меры возбудимости ткани: порог раздражения, хронаксия, лабильность.
- •55. Гипоталамус и его физиологическое значение.
3. Структурная и функциональная организация нейронов в рефлекторной дуге.
Морфологической единицей нервной системы является нейрон, состоящий из тела (сомы) и отростков (одного длинного мало ветвящегося — аксона, или нервного волокна, и одного или нескольких коротких сильно ветвящихся — дендритов).
Функциональной единицей нервной системы является ансамбль нейронов, связанных выполнением общей функции.
В нервной системе человека содержится около 100 млрд. нейронов. Нервная клетка является низшим уровнем организации нервной системы. Возбуждение генерируется в начальном сегменте аксона, который является триггерной зоной. Нервная клетка воспринимает сигналы через дендриты и тело, а передает сигнал через аксон. Нервная клетка имеет сотни входов и один выход.
Аксон в нервной клетки бывает только один. Его длина составляет от нескольких сантиметров до нескольких метров. Диаметр аксона по всей длине почти одинаков. От аксона отходят боковые коллатерали, которые на концах дают множество разветвлений.
У нейрона много дендритов, они коротки, сильно ветвятся и словно продолжают тело нейрона. Отходят от тела и широким концом и неожиданно суживаются к концу.
По морфологическим характеристикам нейроны классифицируются:
мультиполярные
псевдоуниполярные
псевдонейроны
По дендритам возбуждение передаётся только к телу нейрона.
Типичным примером мультиполярного нейрона может служить мотонейрон вентролатерального ядра спинного мозга. Аксоны этих нейронов могут достигать до 1,5 метров. Иннервируют мышцы конечностей. Их дендриты сильно ветвятся в сером веществе спинного мозга и соприкасаются с отростками других нейронов.
Типичным примером биполярного нейрона могут служить чувствительные клетки в органах обоняния, сетчатке глаза.
Примером псевдонейрона могут служить нейроны спинномозговых ганглиев.
4. Последствия повреждения спинного мозга на различных уровнях (знать центры).
При травмах у человека в ряде случаев происходит полное или половинное пересечение спинного мозга. При половинном латеральном повреждении спинного мозга развивается синдром Броун-Секара. Он проявляется в том, что на стороне поражения спинного мозга (ниже места поражения) развивается паралич двигательной системы вследствие повреждения пирамидных путей. На противоположной поражению стороне движения сохраняются.
На стороне поражения (ниже места поражения) нарушается проприоцептивная чувствительность. Это обусловлено тем, что восходящие пути глубокой чувствительности идут по своей стороне спинного мозга до продолговатого мозга, где происходит их перекрест.
На противоположной стороне туловища (относительно повреждения спинного мозга) нарушается болевая чувствительность, так как проводящие пути болевой чувствительности кожи идут от спинального ганглия в задний рог спинного мозга, где переключаются на новый нейрон, аксон которого переходит на противоположную сторону. В итоге если повреждена левая половина спинного мозга, то исчезает болевая чувствительность правой половины туловища ниже повреждения. Полную перерезку спинного мозга в экспериментах на животных производят для исследования влияния вышележащих отделов ЦНС на нижележащие. После полного пересечения спинного мозга возникает спинальный шок. Это явление заключается в том, что все центры ниже перерезки перестают организовывать присущие им рефлексы. Нарушение рефлекторной деятельности после пересечения спинного мозга у разных животных длится разное время. У лягушек оно исчисляется десятками секунд, у кролика рефлексы восстанавливаются через 10—15 мин, у собак отдельные рефлексы, например, мышечного сокращения, восстанавливаются через несколько часов, другие — через несколько дней (рефлексы регуляции артериального давления), через недели восстанавливаются рефлексы мочеиспускания. У обезьян первые признаки восстановления рефлексов после перерезки спинного мозга появляются через несколько суток; у человека первые спинальные рефлексы восстанавливаются через несколько недель, а то и месяцев.
Следовательно, чем сложнее организация ЦНС у животного, тем сильнее контроль вышележащих отделов мозга над нижележащими. То, что причиной шока является нарушение супраспинальных влияний, доказывается повторной перерезкой спинного мозга ниже места первой перерезки. В этом случае спинальный шок не возникает, рефлекторная деятельность спинного мозга сохраняется.
По истечении длительного периода времени после шока спинальные рефлексы резко усиливаются, что объясняется устранением тормозного влияния ретикулярной формации ствола мозга на рефлексы спинного мозга.