
- •Продуценты в биотехнологии Бактерии
- •Дрожжи (внетаксономическая группа грибов, утративших мицелиальное строение)
- •3.1. Смешанные культуры микроорганизмов. Использование. Типы взаимодействия между микроорганизмами в смешанной культуре.
- •3.2. Отличия биотехнологических процессов от химических. Обобщенные схемы основных производств микробиологического синтеза.
- •3.3. Биотехнология получения витаминов на примере витамина b12.
- •3.4. Общие показатели загрязненности сточных вод. Классификация методов очистки сточных вод.
- •4. Бактериальные и биологические загрязнения сточных вод
- •3.5. Среднее время пребывания потока в аппарате, как одна из основных характеристик кривых распределения. С- и f- кривые. Моменты с-кривой и их сущность.
- •4.1. Конкурентное ингибирование в периодической и хемостатной культуре.
- •4.2. Сорбционные методы выделения продуктов биосинтеза.
- •4.3. Уксусная кислота. Методы получения. Технология уксуснокислого брожения.
- •4.4. Ксенобиотики как загрязняющие факторы окружающей среды
- •1. Ксенобиотический профиль биогеоценоза
- •2. Пути переноса и трансформации ксенобиотиков
- •4. Ксенибиотики (кб) как зазрязняющие факторы ос. Основные источники поступления. Пути миграции и превращения.
- •5.1.Пищевая конкуренция в смешанных культурах. Влияние условий культивирования на состав популяций. Аутостабилизация фактора, ограничивающего развитие популяции.
- •5.2. Конструкции барботажных и барботажно-эрлифтных ферментеров.
- •5.2. Ферментеры газлифтные колонные и тарельчатые. Достоинства и недостатки.
- •5.3. Аминокислоты. Биосинтез, производство и характеристика лизина.
- •5.4 Аэробная очистка сточных вод. Последовательные стадии очистки.
- •5.6. Решение:
- •6.2. Сублимационная сушка.
- •6.3. Направленный синтез аминокислот и его регуляция. Ферментативная конверсия субстратов в аминокислоты.
- •6.4. Особенности микробиологической трансформации отдельных классов органических ксенобиотиков (пестициды, пав, органические галогенированные соединения).
- •7.1. Основные фазы роста и развития микробной культуры при периодическом культивировании.
- •7.3. Пищевая биотехнология. Производство молочных продуктов.
- •7.4. Микробиологические превращения металлов. Биосорбция металлов из растворов.
- •7.5. Аппаратурное оформление и основные принципы процесса ректификации.
- •8.1. Параметры роста культур микроорганизмов: скорость роста, время генерации, скорость деления, время удвоения. Эффективность биосинтеза.
- •8.2. Методы очистки и стерилизации воздуха. Аппаратурное оформление операций.
- •8.3.Продуценты белка
- •8.4. Характеристика анаэробных реакторов. Методика расчета менатенка. Области применения анаэробной очистки сточных вод. Сравнительный анализ эффективности работы аэробных и анаэробных реакторов.
- •8.5. Этапы процесса проектирования. Этапы создания детализированной технологической схемы, предварительной компоновки оборудования и корректировки начальной технологической схемы.
- •9.1. Особенности, условия и приемы культивирования изолированных тканей.
- •9.2. Экстракция. Применение в биотехнологии. Способы экстрагирования.
- •9.3. Спиртовое брожение. Производство этилового спирта. Области применения. Сырье, технологическая схема.
- •10.1. Одноступенчатое гомогенное культивирование микроорганизмов с рециркуляцией. Преимущества и недостатки.
- •10.2. Охрана труда, техника безопасности и санитарный контроль микробиологических производств.
- •10.3. Глутаминовая кислота: способы получения, биосинтез и схема получения.
- •10.4.Химия и использование бактериального окисления сульфидных минералов. Выщелачивание куч и отвалов, подземное выщелачивание
- •Механизм бактериального выщелачивания
- •Организация выщелачивания
- •10.5. Конструкции теплообменных аппаратов.
- •11.1 Влияние условий культивирования на скорость роста микроорганизмов.
- •11.2. Способы выделения биолологически активных веществ из биомассы микроорганизмов.
- •11.3. Лимонная кислота. Биосинтез. Технологическая схема производства.
- •11.4. Бактериальное выщелачивание.
- •11.5. Выпаривание. Температура кипения растворов (ткр). Температурная депрессия (тд). Технические методы выпаривания (тмв).
11.2. Способы выделения биолологически активных веществ из биомассы микроорганизмов.
Для отделения взвешенных биологических частиц от культуральнон жидкости используются различные физико-химические свойства: плотность частиц, размер частиц, поверхностные свойства частиц.
При разделении суспензий по плотности частиц используют следующие методы: седиментация— для крупных частиц размером от 2,3 мкм до 1 мм, по плотности отличающихся от окружающего раствора; гидроциклонирование — от 5 до 700 мкм; центрифугирование — от 400 до 900 им; ультрацентрифугирование — от 10 нм до 1 мкм.
По размеру частиц методы разделения биологических суспензий могут быть следующими: фильтрация через тканевые фильтры — для частиц размером от 10 мкм до 1 мм; микрофильтрация — для частиц размером от 200 нм до 10 мкм; ультрафильтрация, позволяющая отделять частицы размером от 10 нм до 5 мкм.
Вирусы — чуть больше 10 нм, бактерии — 0,3—1,0 мкм (т.е. 300—1000нм), дрожжи — 3—5 мкм, мицелий грибов и эритроциты — до 10 мкм.
Макромолекулы имеют размеры частиц в диапазоне 10—120 нм, микрочастицы — от 120 нм до 10 мкм, тонкие взвеси — от 10 до 100 мкм и грубые взвеси — от 100 мкм до 1 мм.
Поверхностные свойства частиц используются в процессе флотации. За основу в этом методе принимается не размер, а способность клеток удерживаться пузырьками воздуха; ориентировочный диапазон размеров флотируемых частиц варьирует от 1 до 200 мкм.
Конкретный выбор того или иного метода зависит от опытной проверки, так как не всегда точно известны свойства отделяемых частиц и их поведение в условиях использования тех или иных методов разделения.
Для успешного проведения процесса отстаивания не обязательно сами микроорганизмы должны быть крупными; они могут концентрироваться на хлопьях, агломератах.
Часто процесс отстаивания комбинируется с предварительной коагуляцией или флокуляцией. В обоих случаях к суспензии добавляется реагент (соли алюминия или железа при коагуляции и полиэлектролиты при флокуляции).
11.3. Лимонная кислота. Биосинтез. Технологическая схема производства.
(СН2 – СООН – СОНСООН – СН2СООН) – трехосновная оксикислота, широко распространенная в плодах и ягодах. Она широко применяется в пищевой промышленности при производстве кондитерских изделий и напитков, в фармацевтической, химической и текстильной промышленности. Лимонная кислота была идентифицирована в качестве продукта метаболизма плесневых грибов в 1893 г. Вемером. В настоящее время это кислота по объемам производства (свыше 350 тыс. т/г) занимает первое место среди всех органических кислот.
У микроорганизмов синтез лимонной кислоты реализуется в цикле дикарбоновых кислот и осуществляется в результате конденсации кислоты с четырьмя атомами углерода и двумя карбоксильными группами и кислоты с одной карбоксильной группой. Образуемая в результате гликолиза пировиноградная кислота связывается с углекислотой; синтезируемая при этом щавелевоуксусная кислота реагирует с уксусной кислотой с образованием лимонной кислоты, то есть образование лимонной кислоты включает реакции гликолиза и ряд реакций цикла Кребса. При каждом обороте цикла молекула щавелевоуксусной кислоты взаимодействует с уксусной, образуя лимонную кислоту:
Производство лимонной кислоты методом ферментации плесневых грибов принадлежит к числу давних биотехнологических процессов. Первое производство было реализовано в конце XIX века. Совершенствование процесса получения лимонной кислоты тесно связано с разработкой многих фундаментальных аспектов микробиологии (борьбой с микробным загрязнением производственной культуры, оптимизацией состава питательных сред, селекцией высокопродуктивных штаммов и др.).
В промышленном производстве лимонной кислоты в качестве продуцента в основном используют Aspergillus niger, но также применяют и A. wentii. Процесс ферментации достаточно сложен, так как лимонная кислота, является продуктом первичного метаболизма грибов, и даже незначительное выделение данного продукта в окружающую среду свидетельствует о выраженном дисбалансе клеточного метаболизма. Рост продуцента и синтез кислоты обычно регулируют составом среды (сахара, P, Mn, Fe, Zn). Сверхсинтез лимонной кислоты реализуется при больших концентрациях сахаров в среде (14–24 %) и является ответной реакцией продуцента на дефицит фосфора, а также других металлов, хотя их роль до конца не ясна. Это, видимо, и подавление анаболизма, и влияние на свойства поверхности и морфологию гиф. Оптимум рН на стадии кислотообразования составляет 1.7–2.0. В более щелочной среде процесс сдвигается в сторону накопления щавелевой и глюконовой кислот. В качестве основы среды обычно используют глюкозный сироп, гидролизаты крахмала или мелассу. Последнюю предварительно разбавляют до требуемого уровня сахаров и обрабатывают с целью снижения содержания металлов. Источником азота служат соли аммония (0.2 %); концентрация фосфатов (0.01–0.-2 %). В качестве пеногасителей используют природные масла с высоким содержанием жирных кислот. Очень существенное значение имеет уровень аэрации культуры.
В производстве лимонной кислоты применяют несколько вариантов процесса. Поверхностный способ реализуется на твердой сыпучей среде и в жидкой фазе. При жидкофазной поверхностной ферментации питательную среду разливают в кюветы слоем от 8 до 18 см. Кюветы размещают на стеллажах в предварительно простерилизованной парами формалина бродильной камере. Через специальные воздуховоды с током стерильного воздуха поверхность среды засевают исходной музейной культурой. В качестве посевного материала используют предварительно полученные также в условиях поверхностной культуры и высушенные споры (конидии) из расчета 50–75 мг конидий на 1 м2 площади кювет. Известно несколько вариантов процесса: бессменный, бессменный с доливами и метод пленок. При бессменном режиме процесс осуществляется на одной среде от момента засева спор до завершения стадии кислотообразования. При использовании метода пленок через 7 суток после завершения кислотообразования сброженный раствор мелассы сливают из кювет, мицелий промывают стерильной водой; и в кюветы заливают новую среду. Бессменный способ с доливом характеризуется дробными добавками мелассы под пленку гриба на стадии кислотообразования (30–35 % от исходного объема), так называемый режим с подпиткой субстратом. Это позволяет повысить выход лимонной кислоты на 15–20 % с единицы поверхности при сокращении затрат сахаров на 10–15 % по сравнению с другими методами. В ходе стадии ферментации на первом этапе (первые 24–36 ч) происходит интенсивный рост мицелия. Температура среды в этот период стабилизируется на уровне 32–34C, интенсивность аэрации составляет 3–4 м3 воздуха в ч/м мицелия. В период активного кислотообразования подачу воздуха увеличивают в 5–6 раз. В результате более интенсивного термогенеза температуру снижают до 30–32. По мере снижения процесса кислотообразования режим аэрации становится менее интенсивным. Контроль процесса ведут по показателям титруемой кислотности среды. Процесс считают завершенным при остаточной концентрации сахаров около 1–2 % и уровне титруемой кислотности 12–20 %. Содержание лимонной кислоты от уровня всех кислот достигает 94–98 %. Сброженный раствор сливают в сборник и направляют на обработку; промытый мицелий используют в кормопроизводстве.
Твердофазная ферментация имеет много общего с поверхностно-жидкофазным процессом. Разработанный в Японии процесс Коджи предусматривает использование в качестве среды пористого материла (багасса, картофель, пульпа сахарной свеклы, пшеничные отруби). Материал предварительно стерилизуют, после охлаждения инокулируют суспензией спор. Ферментация происходит в лотках при 25–30C в течение 6–7 дней. Образованную лимонную кислоту экстрагируют водой. В Японии 20 % общего объема производства лимонной кислоты получают методом Коджи.
Начиная с 1950 г., промышленные процессы получения лимонной кислоты стали переводить в условия глубинной культуры. Стабильный процесс возможен при его организации в две стадии: рост мицелия на полной среде в ходе первой стадии и на второй (при отсутствии фосфора в среде) – образование лимонной кислоты. Глубинная ферментация проводится в аппаратах емкостью 50 м3 с заполнением на 70–75 %. В качестве посевного материала используют мицелий, подрощенный также в условиях глубинной культуры. В производственном аппарате, куда подрощенный мицелий передается по стерильной посевной линии, питательная среда содержит 12–15 % сахаров. Ферментацию проводят при 31–32 при непрерывном перемешивании. В ходе процесса кислотообразования (5–7 суток) реализуют интенсивный режим аэрации (до 800–1000 м3/ч) с дробным добавлением сахаров, 2–3 подкормки. Выход лимонной кислоты составляет от 5 до 12 %, остаточная концентрация сахаров – 0.2–1.5 %, доля цитрата – 80–98 % от суммы всех органических кислот.
В 60-е годы начали разрабатывать процессы получения лимонной кислоты на основе жидких углеводородов (С9–С30) с использованием в качестве продуцентов дрожжей (Candida) и бактерий (Brevibacterium, Corynebacterium, Arthrobacter), а также с применением метода проточных культур. Эти технологии, пока не реализованные в промышленных масштабах, обещают в будущем определенные технологические перспективы.
Готовый продукт – высокоочищенную кристаллическую лимонную кислоту получают в ходе постферментационной стадии. В сброженных растворах содержатся, помимо целевой кислоты, также глюконовая и щавелевая кислоты, остатки несброженных сахаров и минеральные соли. Для выделения лимонной кислоты из данного раствора ее связывают гидроокисью кальция с образованием труднорастворимого цитрата кальция:
2 С6Н8О7 + 3 Са(ОН)2 = Са3(С6Н5О7)2 + 6 Н2О.
Одновременно образуются кальциевые соли глюконовой и щавелевой кислот, глюконат кальция Са(С6Н11О7)2 и оксалат кальция СаС2О4. Кальциевые соли лимонной и щавелевой кислот выпадают в осадок, а глюконат кальция и основная часть органических и минеральных компонентов мелассы остаются в растворе. Осадок отделяется на вакуум-фильтре, промывается и высушивается. Далее для перевода лимонной кислоты в свободное состояние и освобождения от оксалата кальция осадок обрабатывают серной кислотой с последующей фильтрацией. Раствор лимонной кислоты фильтруют, концентрируют вакуум-выпаркой и затем подвергают кристаллизации при медленном охлаждении до 8–10. Полученные кристаллы отделяют в центрифуге от маточника и высушивают в пневматических сушилках при 30–35. Готовый продукт содержит не менее 99.5 % лимонной кислоты (в пересчете на моногидрат), зольность – не выше 0.1– 0.35 %.