
- •1.Равномощные множества. Счетные множества и их свойства.
- •2 . Верхняя и нижняя грани числовых множеств. Теорема о существовании верхней грани. Несчетность множества действительных чисел.
- •3.Ограниченные и бесконечно малые последовательности.Действия над ними
- •4 . Предел последовательности, единственность предела.
- •5.Арифметические действия над сходящимися последовательностями
- •6 .Порядковые свойства предела и порядковый признак существования предела.
- •7.Монотонные последовательности. Теорема Вейерштрасса о монотонных последовательностях.
- •8.Частичные пределы последовательности. Теорема Больцано – Вейерштрасса.
- •9.Верхний и нижний пределы последовательности, связь со сходимостью.
- •10.Фундаментальные последовательности и критерий Коши сходимости последовательности.
- •11.Числовой ряд, сумма ряда, сходящийся числовой ряд. Критерий Коши сходимости числового ряда.
- •12.Необходимое условие сходимости числового ряда.
- •18. Теорема коши для рядов с убывающей последовательностью членов
- •20.Признак Абеля.
- •21.Признаки Дирихле и Лейбница.
- •26.Непрерывность функции в точке.Определение гейне и коши, их равносильность
- •27.Арифметические действия над непрерывными функциями
- •28.Непрерывность композиции
- •29.Локальная ограниченность непрерывной в точке функции
- •30.Устойчивость неравенств для непрерывной в точке функции
- •31.Предел функции в точке. Критерий Коши сходимости функции в точке.
- •32.Свойства предела.
- •33.Порядковый признак существования предела.
- •34.Односторонняя непрерывность функции и односторонние пределы функции в точке. Точки разрыва функции и их классификация.
- •35.Монотонные функции и их свойства.
- •36.Компактное числовое множество. Критерий компактности.
- •37.Теорема о непрерывном образе компакта. Две теоремы Вейерштрасса о непрерывных функциях.
- •38.Теорема Коши о промежуточных значениях непрерывной функции.
- •40.Равномерная непрерывность функции на множестве. Теорема Кантора.
- •41. Дифференцируемость функции в точке, производная функции в точке. Геометрический и физический смысл производной.
- •42.Непрерывность дифференцируемой функции
- •43.Дифференцируемости композиций
- •44. Арифметические действия над дифференцируемыми функциями
- •47. Локальный экстремум и теорема Ферма.
- •48. Теоремы Роля и Лагранжа.
- •49. Первообразная. Теорема о первообразной.
- •50. Интегрируемость в смысле Ньютона – Лейбница и интеграл Ньютона - Лейбница.
- •51. Простейшие свойства интеграла.
- •52.Формулы замены переменной и интегрирование по частям
- •53. Обобщенная теорема о реднем и формула конечных приращений Коши.
- •54. Правила Лопиталя раскрытия неопределенностей.
- •57. Непрерывность, дифференцируемость и интегрируемость предела функциональной последовательности.
- •58. Приближение непрерывной функции ломаными. Интегрируемость в смысле Ньютона-Лейбница непрерывной функции.
- •59. Определение n-производной и n-интеграла.
- •65. Критерий выпуклости дифференцируемой функции.
- •66. Критерий выпуклости дважды дифференцируемой функции.
32.Свойства предела.
=А<B=
f(x)<g(x)
Следствие.
Пусть
=А,
.
Тогда, если
f(x)<g(x), то А
f(x)
g(x), то А
f(x)<С, то А
f(x) С, то А
33.Порядковый признак существования предела.
=
=A
34.Односторонняя непрерывность функции и односторонние пределы функции в точке. Точки разрыва функции и их классификация.
Опр.
(Коши) f непрерывна в точке
х0 справа (слева)
(х0
x<
х0
Опр.
(Гейне) f непрерывна в
точке х0 справа (слева)
: 1)
; 2)
, (т.е.
≠
+0)
( 1)
; 2)
, (т.е.
≠
-0))
выполняется условие f(xn)
f(x0).
Справа
А=
<=>
Слева
В=
<=>
Опр. Точка х0 D(f) называют точкой разрыва f f не является непрерывной в этой точке
Опр.
Точка х0 – точка устраненного
разрыва f
Опр.
Точка х0 – точка разрыва первого
рода
Опр. Все остальные точки разрыва – точки разрыва второго рода (один или оба односторонних предела не существуют)
35.Монотонные функции и их свойства.
Опр.
f неубывающая (невозрастающая)
(
)
f
возрастающая (убывающая)
(
)
СВОЙСТВА:
f- монотонна на (a,b) => f может иметь точки разрыва лишь первого рода.
f- монотонна на (a,b) => множество точек разрыва не более чем счетно.
36.Компактное числовое множество. Критерий компактности.
Опр.
Х – компакт (или компактное множество)
- последовательность в Х
Х – компакт Х ограничено и замкнуто
37.Теорема о непрерывном образе компакта. Две теоремы Вейерштрасса о непрерывных функциях.
Х – компакт, f непрерывна на Х y=f(x) – компакт
f непрерывна на [a,b] f ограниченна
f непрерывна на [a,b] f принимает на [a,b] наибольшее и наименьшее значения
1теорема) Если f(x) непр. на [a,b], тогда f(x) огран. на этом отрезке, т.е. с>0:f(x)c x(a,b).
Док-во т-мы 1. Используем метод деления отрезка пополам. Начинаем от противного; f неогр. на [a,b], разделим его, т.е. тогда отрезки [a;c][c;b] f(x) неогр.
Обозн. [a1,b1] и педелим отрез. [a2,b2], где f-неогр. Продолжая процедуру деления неогр. получаем послед. влож. отрезки [an;bn] котор. оттяг. к т-ке d (d=c с надстройкой) из отрезка [a,b], общее для всех отр. Тогда с одной стороны f(x) неогр. в окр-ти т-ки d на конц. отрезка [an,bn], но с др. стороны f непр. на [a,b] и => в т-ке d и по св-ву она непр. в некоторой окрестности d. Оно огран. в d => получаем против. Поскольку в любой окр-ти т-ки d нах-ся все отрезки [an;bn] с достаточно большим 0.
2теорема) Если f(x) непр. на [a,b], тогда она достигает своего экстр. на этом отрезке, т.е. т-ка max X*:f(x*)f(x) x[a,b], т-ка min X_:f(x_)f(x) x[a,b].
Док-во.Обозначим E(f) – множиством значений ф-ии f(x) на отр. [a,b] по предыд. т-ме это мн-во огран. и сл-но имеет конечные точные грани supE(f)=supf(x)=(при х[a,b])=M(<). InfE(f)= inff(x)=m(m>-). Для опр. докажем [a,b] f(x) достигает макс. на [a,b], т.е. х*:f(x)=M. Допустим противное, такой т-ки не и сл-но f(x)<M x[a,b] рассмотрим вспомогат. ф-цию g(x)=1/(M-f(x) при х[a,b]. g(x) – непр. как отношение 2-х непр. ф-ций и то знач. 0 согластно т-ме 1 g(x)- огран. т.е. c>0
!0<g(x)c g0, на [a,b] – 1/(M-f(x))c => 1c(M-f(x)) => f(x) M-1/c x[a,b]
Однако это нер-во противор., т.к. М-точная верхн. грань f на [a,b] а в правой части стоит “C”