
- •1.Определения и вычисление 2 и 3го порядка. Свойства определителей.
- •2.Матрицы,основные определения. Действия над матрицами.
- •3.Определение минора элемента, алгебраического дополнения.
- •4.Понятие обратной матрицы. Теорема об ее вычислении.
- •5.Понятие о ранге матрицы.
- •6.Системы линейных уравнений. Основные понятия.
- •7.Системы линейных однородных уравнений. Методы решения.
- •8.Правило Крамера.
- •Если система (2.3) имеет единственное решение, определяемое по формулам: .
- •9.Метод Гаусса.
- •10) Решение линейных систем с помощью обратной матрицы.
- •11)Векторы. Основные определения. Сложение и вычитание векторов.
- •12)Умножение вектора на скаляр. Коллинеарные вектора. Необходимое и достаточное условия коллинеарности векторов.
- •13)Определение проекции вектора на ось. Теоремы о проекциях. Вектор в трехмерном пространстве. Направляющие косинусы. Разложение вектора по ортам.
- •14) Линейная зависимость и независимость векторов.
- •15)Скалярное произведение векторов. Геометрический и механический смысл. Свойства. Таблица умножения ортов. Угол между векторами.
- •16)Понятие тройки векторов. Левая, правая тройка, Определение векторного произведения. Геометрический смысл. Свойства. Векторное произведение в декартовых координатах.
- •17) Смешанное произведение векторов. Свойства и геометрический смысл. Компланарные векторы.
- •18) Полярная система координат
- •19) Прямая на плоскости. Общее уравнение прямой. Частные случаи. Расположение двух прямых на плоскости.
- •20)Эллипс.
- •21)Гипербола.
- •22)Парабола.
- •23)Уравнение линии и поверхности в пространстве.
- •24)Плоскость. Общее уравнение. Случаи расположения 2-х плоскостей в пространстве. Уравнение плоскости, проходящей через 3 точки.
- •25.Уравнение прямой в пространстве. Случаи расположения двух прямых. Угол между прямой и плоскостью. Формула расстояния от точки до плоскости.
- •26. Поверхности второго порядка. Построение методом сечений.
- •27.Определение функции. Способы задания. Классификация.
- •28.Предел числовой последовательности. Основные определения. Теорема об ограниченной последовательности.
- •29. Основные теоремы о пределах.
- •30.Определение множества и ограниченного множества. Супремум. Инфимум.
- •Ограниченное числовое множество.
- •Ограниченное множество в метрическом пространстве
- •Ограниченность в частично упорядоченном множестве
- •31.Определение предела числовой последовательности. Признаки существования предела, теорема о зажатой последовательности.
- •32.Предел функции. Теоремы о пределах. Способы вычисления пределов.
- •Алгоритм решения.
- •33.Определение предела функции. 1 и 2 замечательный предел.
- •Бесконечно большие f(X) и g(X) считаются величинами одного порядка, если
- •Если , то f(X) считается бесконечно большой более высокого порядка, чем g(X).
- •Бесконечно большая f(X) называется величиной k-го порядка относительно бесконечно большой g(X), если .
- •35.Односторонние пределы функции. Определение. Непрерывность функции в точке.
- •36.Непрерывность функции в точке.
- •37.Понятие проивзодной,ее физический и геометрический смысл.
- •38. Определение производной. Правило дифференцирования суммы и частного функции, разности и произведения функций.
- •39.Правило дифференцирования сложной функции. Теорема о производной обратной функции. Дифференцирование функции, заданной неявно. Понятие логарифмической производной.
- •40.Нахождение производной функции, заданной параметрически.
- •41.Дифференциал. Определение ,свойства, геометрический смысл.
- •42.Дифференциалы и производные высших порядков.
- •43.Теоремы Ферма, Ролля, Лагранжа и Коши и их геометрический смысл.
- •44.Правило Лопиталя. Следствие о раскрытии неопределенностей разных видов.
- •45.Формула Тейлора.
- •46.Выпуклость и вогнутость кривых. Определение. Определение точки перегиба.
- •47.Асимпоты. Определение. Классификация.
- •48.Комплескные числа.
- •49.Функции нескольких переменных.
- •50.Предел функции двух переменных. Непрерывные функции, частные производные.
- •51.Полный дифференциал. Производные сложной функции.
- •52.Неявные функции и их дифференцирование.
- •53.Касательная плоскость и нормаль к поверхности. Частные производные.
- •54.Дифференциалы высших порядков.
- •55.Первообразная функция и неопределенный интеграл .Свойства неопределенного интеграла.
- •56.Интегрирование методом замены и внесения под знак дифференциала.
- •57.Интегрирование по частям.
- •58. Интегрирование рациональных функций.
- •59.Интегрирование иррациональных функций.
- •1. Сделаем замену , тогда , а . Следовательно,
- •2. . Так как , а , выберем в качестве новой переменной . Тогда . Поэтому
- •60.Интегрирование тригонометрических функций.
1. Сделаем замену , тогда , а . Следовательно,
2. . Так как , а , выберем в качестве новой переменной . Тогда . Поэтому
Интегрирование квадратичных иррациональностей.
При
вычислении интегралов
свести подынтегральную функцию к
рациональной помогают замены:
а)
при этом
dx
= acos
t
dt,
.
б)
tg
t,
тогда
,
в)
соответственно
Пример
1. Вычислим интеграл
Пусть
тогда
Заметим, что
.
Поэтому ответ можно представить в виде:
Пример
2. Для вычисления интеграла
выберем замену x
= 3tg
t.
При этом
,
где u
= sin
t
. Представив подынтегральную функцию
в виде суммы простейших дробей, получим:
(Учитываем, что
).
Пример
3. Вычислим интеграл
с помощью замены
.
Тогда
60.Интегрирование тригонометрических функций.
Лекция 10. Интегрирование рациональных тригонометрических выражений. Интегрирование квадратичных иррациональностей. Интегрируемость в элементарных функциях.
Рассмотрим интегрирование некоторых тригонометрических выражений.
Интегралы вида
вычисляются с применением формул
(10.1) Пример.
Интегралы вида
, где т и п – целые числа, интегрируются с помощью замен: а) если хотя бы одно из чисел т,п – нечетное (например, т), можно сделать замену t = sin x (или t = cos x при нечетном п). Пример 1.
Пример 2.
б) если т и п – четные положительные числа, можно понизить степени тригонометрических функций с помощью формул
. Пример.
в) если т и п – четные и хотя бы одно из них отрицательно, можно применить замену t = tg x или t = ctg x. Пример.
Интегралы вида
где R – рациональная функция, сводятся к интегралам от рациональных функций с помощью универсальной тригонометрической подстановки:
, тогда
, (10.2) то есть все составляющие подынтегрального выражения представляют собой рациональные функции от t. Пример.
Если подынтегральная функция имеет вид R (sin²x, cos²x), можно выбрать замену t = tg x. При этом
, (10.3) и степень полученной рациональной функции будет ниже, чем при универсальной тригонометрической подстановке, что облегчает дальнейшее интегрирование. Пример.