
- •1.Определения и вычисление 2 и 3го порядка. Свойства определителей.
- •2.Матрицы,основные определения. Действия над матрицами.
- •3.Определение минора элемента, алгебраического дополнения.
- •4.Понятие обратной матрицы. Теорема об ее вычислении.
- •5.Понятие о ранге матрицы.
- •6.Системы линейных уравнений. Основные понятия.
- •7.Системы линейных однородных уравнений. Методы решения.
- •8.Правило Крамера.
- •Если система (2.3) имеет единственное решение, определяемое по формулам: .
- •9.Метод Гаусса.
- •10) Решение линейных систем с помощью обратной матрицы.
- •11)Векторы. Основные определения. Сложение и вычитание векторов.
- •12)Умножение вектора на скаляр. Коллинеарные вектора. Необходимое и достаточное условия коллинеарности векторов.
- •13)Определение проекции вектора на ось. Теоремы о проекциях. Вектор в трехмерном пространстве. Направляющие косинусы. Разложение вектора по ортам.
- •14) Линейная зависимость и независимость векторов.
- •15)Скалярное произведение векторов. Геометрический и механический смысл. Свойства. Таблица умножения ортов. Угол между векторами.
- •16)Понятие тройки векторов. Левая, правая тройка, Определение векторного произведения. Геометрический смысл. Свойства. Векторное произведение в декартовых координатах.
- •17) Смешанное произведение векторов. Свойства и геометрический смысл. Компланарные векторы.
- •18) Полярная система координат
- •19) Прямая на плоскости. Общее уравнение прямой. Частные случаи. Расположение двух прямых на плоскости.
- •20)Эллипс.
- •21)Гипербола.
- •22)Парабола.
- •23)Уравнение линии и поверхности в пространстве.
- •24)Плоскость. Общее уравнение. Случаи расположения 2-х плоскостей в пространстве. Уравнение плоскости, проходящей через 3 точки.
- •25.Уравнение прямой в пространстве. Случаи расположения двух прямых. Угол между прямой и плоскостью. Формула расстояния от точки до плоскости.
- •26. Поверхности второго порядка. Построение методом сечений.
- •27.Определение функции. Способы задания. Классификация.
- •28.Предел числовой последовательности. Основные определения. Теорема об ограниченной последовательности.
- •29. Основные теоремы о пределах.
- •30.Определение множества и ограниченного множества. Супремум. Инфимум.
- •Ограниченное числовое множество.
- •Ограниченное множество в метрическом пространстве
- •Ограниченность в частично упорядоченном множестве
- •31.Определение предела числовой последовательности. Признаки существования предела, теорема о зажатой последовательности.
- •32.Предел функции. Теоремы о пределах. Способы вычисления пределов.
- •Алгоритм решения.
- •33.Определение предела функции. 1 и 2 замечательный предел.
- •Бесконечно большие f(X) и g(X) считаются величинами одного порядка, если
- •Если , то f(X) считается бесконечно большой более высокого порядка, чем g(X).
- •Бесконечно большая f(X) называется величиной k-го порядка относительно бесконечно большой g(X), если .
- •35.Односторонние пределы функции. Определение. Непрерывность функции в точке.
- •36.Непрерывность функции в точке.
- •37.Понятие проивзодной,ее физический и геометрический смысл.
- •38. Определение производной. Правило дифференцирования суммы и частного функции, разности и произведения функций.
- •39.Правило дифференцирования сложной функции. Теорема о производной обратной функции. Дифференцирование функции, заданной неявно. Понятие логарифмической производной.
- •40.Нахождение производной функции, заданной параметрически.
- •41.Дифференциал. Определение ,свойства, геометрический смысл.
- •42.Дифференциалы и производные высших порядков.
- •43.Теоремы Ферма, Ролля, Лагранжа и Коши и их геометрический смысл.
- •44.Правило Лопиталя. Следствие о раскрытии неопределенностей разных видов.
- •45.Формула Тейлора.
- •46.Выпуклость и вогнутость кривых. Определение. Определение точки перегиба.
- •47.Асимпоты. Определение. Классификация.
- •48.Комплескные числа.
- •49.Функции нескольких переменных.
- •50.Предел функции двух переменных. Непрерывные функции, частные производные.
- •51.Полный дифференциал. Производные сложной функции.
- •52.Неявные функции и их дифференцирование.
- •53.Касательная плоскость и нормаль к поверхности. Частные производные.
- •54.Дифференциалы высших порядков.
- •55.Первообразная функция и неопределенный интеграл .Свойства неопределенного интеграла.
- •56.Интегрирование методом замены и внесения под знак дифференциала.
- •57.Интегрирование по частям.
- •58. Интегрирование рациональных функций.
- •59.Интегрирование иррациональных функций.
- •1. Сделаем замену , тогда , а . Следовательно,
- •2. . Так как , а , выберем в качестве новой переменной . Тогда . Поэтому
- •60.Интегрирование тригонометрических функций.
46.Выпуклость и вогнутость кривых. Определение. Определение точки перегиба.
Кривая называется выпуклой (обращенной выпуклостью вверх) на интервале (ab), если все точки кривой лежат ниже любой ее касательной на этом интервале.
Кривая называется вогнутой (обращенной выпуклостью вниз) на интервале (ab), если все точки кривой лежат выше любой ее касательной на этом интервале.
у
А В С
Например, кривая, изображенная на рисунке, выпукла на интервале (ВС) и вогнута на интервале (АВ).
Теорема 23.1. Если f ′′(x) < 0 во всех точках интервала (ab), то кривая y = f(x) выпукла на этом интервале. Если f ′′(x) > 0 во всех точках интервала (ab), то кривая y = f(x) вогнутаа на этом интервале.
Д
оказательство.
Докажем первое утверждение теоремы.
Пусть f
′′(x)
< 0 на (ab).
у
а x0 b
Выберем на интервале (ab) произвольную точку х = х0 и докажем, что все точки кривой на этом интервале лежат ниже проведенной в точке с абсциссой х0 касательной, то есть ордината любой точки кривой на рассматриваемом интервале меньше ординаты касательной. Уравнение кривой имеет вид y = f(x), а уравнение касательной при х = х0:
.
Тогда
.
Применив теорему Лагранжа, получим:
,
где с
лежит между х
и х0.
Применим к первому множителю правой
части полученного равенства еще раз
теорему Лагранжа:
(23.1)
(здесь
с1
– между х0
и с).
Пусть x
> x0.
Тогда x0
< c1
< c
< x,
то есть c
– x0
> 0, x
– x0
> 0, f
′′(c1)
< 0, поэтому
Если же x
< x0,
то x
< c
< c1
< x0
, поэтому c
– x0
< 0, x
– x0
< 0, f
′′(c1)
< 0. Но при
этом по-прежнему
Таким
образом, любая точка кривой на данном
интервале лежит ниже касательной в
точке с абсциссой х0.
Следовательно, кривая является выпуклой.
Второе утверждение теоремы доказывается аналогичным образом.
Определение 23.3. Точка, отделяющая выпуклую часть непрерывной кривой от вогнутой, называется точкой перегиба.
Замечание. Если в точке перегиба существует касательная к кривой, то в этой точке она пересекает кривую, потому что по одну сторону от данной точки кривая проходит выше касательной, а по другую – ниже.
Теорема 23.2 (необходимое условие точки перегиба). Если в точке x0 перегиба кривой, являющейся графиком функции y = f(x), существует вторая производная f ′′(x), то f ′′(x0) = 0.
Доказательство.
Так как при
х = х0
,
по формуле Тейлора получаем:
.
Если бы
,
разность
сохраняла бы постоянный знак в некоторой
окрестности точки х0
, в то время как в точке перегиба эта
разность должна менять знак. Следовательно,
f
′′(x0)
= 0.
Теорема 23.3 ( достаточное условие точек перегиба). Если функция y = f(x) дифференцируема в точке х0 , дважды дифференцируема в проколотой окрестности этой точки и f ′′(x) меняет знак при х = х0 , то х0 – точка перегиба.
Доказательство. Воспользовавшись формулой (23.1), получим, что знак разности определяется знаком f ′′(c1), так как (c – x0)(x – x0) > 0 по обе стороны точки х0. Следовательно, меняет знак при х = х0, то есть х0 – точка перегиба.
Замечание. Можно доказать, что если в условиях теоремы 22.5 критическая точка не является точкой экстремума, то она является точкой перегиба.
Пример. Найдем интервалы выпуклости и вогнутости и точки перегиба функции y = x³ -6x² + x – 12. y′ = 3x² - 12x + 1, y′′ = 6x – 12. y′′ = 0 при х = 2, y′′ < 0 при х < 2, y′′ > 0 при х > 2. Таким образом, график функции является выпуклым при х < 2, вогнутым при х > 2, а х = 2 – точка его перегиба.