
- •1.Определения и вычисление 2 и 3го порядка. Свойства определителей.
- •2.Матрицы,основные определения. Действия над матрицами.
- •3.Определение минора элемента, алгебраического дополнения.
- •4.Понятие обратной матрицы. Теорема об ее вычислении.
- •5.Понятие о ранге матрицы.
- •6.Системы линейных уравнений. Основные понятия.
- •7.Системы линейных однородных уравнений. Методы решения.
- •8.Правило Крамера.
- •Если система (2.3) имеет единственное решение, определяемое по формулам: .
- •9.Метод Гаусса.
- •10) Решение линейных систем с помощью обратной матрицы.
- •11)Векторы. Основные определения. Сложение и вычитание векторов.
- •12)Умножение вектора на скаляр. Коллинеарные вектора. Необходимое и достаточное условия коллинеарности векторов.
- •13)Определение проекции вектора на ось. Теоремы о проекциях. Вектор в трехмерном пространстве. Направляющие косинусы. Разложение вектора по ортам.
- •14) Линейная зависимость и независимость векторов.
- •15)Скалярное произведение векторов. Геометрический и механический смысл. Свойства. Таблица умножения ортов. Угол между векторами.
- •16)Понятие тройки векторов. Левая, правая тройка, Определение векторного произведения. Геометрический смысл. Свойства. Векторное произведение в декартовых координатах.
- •17) Смешанное произведение векторов. Свойства и геометрический смысл. Компланарные векторы.
- •18) Полярная система координат
- •19) Прямая на плоскости. Общее уравнение прямой. Частные случаи. Расположение двух прямых на плоскости.
- •20)Эллипс.
- •21)Гипербола.
- •22)Парабола.
- •23)Уравнение линии и поверхности в пространстве.
- •24)Плоскость. Общее уравнение. Случаи расположения 2-х плоскостей в пространстве. Уравнение плоскости, проходящей через 3 точки.
- •25.Уравнение прямой в пространстве. Случаи расположения двух прямых. Угол между прямой и плоскостью. Формула расстояния от точки до плоскости.
- •26. Поверхности второго порядка. Построение методом сечений.
- •27.Определение функции. Способы задания. Классификация.
- •28.Предел числовой последовательности. Основные определения. Теорема об ограниченной последовательности.
- •29. Основные теоремы о пределах.
- •30.Определение множества и ограниченного множества. Супремум. Инфимум.
- •Ограниченное числовое множество.
- •Ограниченное множество в метрическом пространстве
- •Ограниченность в частично упорядоченном множестве
- •31.Определение предела числовой последовательности. Признаки существования предела, теорема о зажатой последовательности.
- •32.Предел функции. Теоремы о пределах. Способы вычисления пределов.
- •Алгоритм решения.
- •33.Определение предела функции. 1 и 2 замечательный предел.
- •Бесконечно большие f(X) и g(X) считаются величинами одного порядка, если
- •Если , то f(X) считается бесконечно большой более высокого порядка, чем g(X).
- •Бесконечно большая f(X) называется величиной k-го порядка относительно бесконечно большой g(X), если .
- •35.Односторонние пределы функции. Определение. Непрерывность функции в точке.
- •36.Непрерывность функции в точке.
- •37.Понятие проивзодной,ее физический и геометрический смысл.
- •38. Определение производной. Правило дифференцирования суммы и частного функции, разности и произведения функций.
- •39.Правило дифференцирования сложной функции. Теорема о производной обратной функции. Дифференцирование функции, заданной неявно. Понятие логарифмической производной.
- •40.Нахождение производной функции, заданной параметрически.
- •41.Дифференциал. Определение ,свойства, геометрический смысл.
- •42.Дифференциалы и производные высших порядков.
- •43.Теоремы Ферма, Ролля, Лагранжа и Коши и их геометрический смысл.
- •44.Правило Лопиталя. Следствие о раскрытии неопределенностей разных видов.
- •45.Формула Тейлора.
- •46.Выпуклость и вогнутость кривых. Определение. Определение точки перегиба.
- •47.Асимпоты. Определение. Классификация.
- •48.Комплескные числа.
- •49.Функции нескольких переменных.
- •50.Предел функции двух переменных. Непрерывные функции, частные производные.
- •51.Полный дифференциал. Производные сложной функции.
- •52.Неявные функции и их дифференцирование.
- •53.Касательная плоскость и нормаль к поверхности. Частные производные.
- •54.Дифференциалы высших порядков.
- •55.Первообразная функция и неопределенный интеграл .Свойства неопределенного интеграла.
- •56.Интегрирование методом замены и внесения под знак дифференциала.
- •57.Интегрирование по частям.
- •58. Интегрирование рациональных функций.
- •59.Интегрирование иррациональных функций.
- •1. Сделаем замену , тогда , а . Следовательно,
- •2. . Так как , а , выберем в качестве новой переменной . Тогда . Поэтому
- •60.Интегрирование тригонометрических функций.
1.Определения и вычисление 2 и 3го порядка. Свойства определителей.
Определителем второго порядка называется число, полученное с помощью элементов квадратной матрицы 2-го порядка следующим образом:
.
При этом из произведения элементов, стоящих на так называемой главной диагонали матрицы (идущей из левого верхнего в правый нижний угол) вычитается произведение элементов, находящихся на второй, или побочной, диагонали.
Пример:
1.
Определителем третьего порядка называется число, определяемое с помощью элементов квадратной матрицы 3-го порядка следующим образом:
Замечание. Для того, чтобы легче запомнить эту формулу, можно использовать так называемое правило треугольников. Оно заключается в следующем: элементы, произведения которых входят в определитель со знаком «+», располагаются так:
образуя два
треугольника, симметричных относительно
главной диагонали. Элементы, произведения
которых входят в определитель со знаком
«-», располагаются аналогичным образом
относительно побочной диагонали:
Пример:
1.
Транспонированием
матрицы называется операция, в результате
которой меняются местами строки и
столбцы с сохранением порядка их
следования. В результате получается
матрица А`,
называемая транспонированной
по отношению
к матрице А,
элементы которой связаны с элементами
А
соотношением
a`ij
= aji
.
Основные свойства определителей.
Сформулируем и докажем основные свойства определителей 2-го и 3-го порядка (доказательство проведем для определителей 3-го порядка).
Свойство 1. Определитель не изменяется при транспонировании, т.е.
Доказательство.
=
Замечание. Следующие свойства определителей будут формулироваться только для строк. При этом из свойства 1 следует, что теми же свойствами будут обладать и столбцы.
Свойство 2. При умножении элементов строки определителя на некоторое число весь определитель умножается на это число, т.е.
.
Доказательство.
Свойство 3. Определитель, имеющий нулевую строку, равен 0.
Доказательство этого свойства следует из свойства 2 при k = 0.
Свойство 4. Определитель, имеющий две равные строки, равен 0.
Доказательство.
Свойство 5. Определитель, две строки которого пропорциональны, равен 0.
Доказательство следует из свойств 2 и 4.
Свойство 6. При перестановке двух строк определителя он умножается на –1.
Доказательство.
Свойство 7.
Доказательство этого свойства можно провести самостоятельно, сравнив значения левой и правой частей равенства, найденные с помощью определения 1.5.
Свойство 8. Величина определителя не изменится, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.
Доказательство следует из свойств 7 и 5.
2.Матрицы,основные определения. Действия над матрицами.
Матрицей называется прямоугольная таблица чисел.
Обозначения:
А – матрица,
- элемент матрицы,
номер строки, в которой стоит данный
элемент,
номер соответствующего столбца; m
– число строк матрицы, n
– число ее столбцов.
Числа m и n называются размерностями матрицы.
Матрица называется квадратной, если m = n. Число n в этом случае называют порядком квадратной матрицы.
Каждой квадратной матрице можно поставить в соответствие число, определяемое единственным образом с использованием всех элементов матрицы. Это число называется определителем.
Матрицы одинаковой размерности называются равными, если у них соответственно равны элементы, стоящие на одинаковых местах.
Матрица называется нулевой, если все ее элементы равны 0.
Квадратная матрица называется единичной, если элементы, стоящие на ее главной диагонали, равны 1, а остальные равны 0.
Линейные операции над матрицами:
Сложение матриц.
Суммой
матриц А и
В одинаковой размерности m
n
называется матрица С той же размерности,
каждый элемент которой равен сумме
элементов матриц А и В, стоящих на тех
же местах:
Свойства сложения:
А + В = В + А.
(А + В) + С = А + (В + С) .
Если О – нулевая матрица, то А + О = О + А = А
Замечание 1. Справедливость этих свойств следует из определения операции сложения матриц.
Замечание 2. Отметим еще раз, что складывать можно только матрицы одинаковой размерности.
Пример.
Умножение матрицы на число.
Произведением матрицы на число называется матрица той же размерности, что и исходная, все элементы которой равны элементам исходной матрицы, умноженным на данное число.
Свойства умножения матрицы на число:
(km)A=k(mA).
k(A + B) = kA + kB.
(k + m)A = kA + mA.
Замечание 1. Справедливость свойств следует из определений 3.4 и 3.5.
Замечание 2. Назовем разностью матриц А и В матрицу С, для которой С + В =А, т.е. С = А + (-1)В.
Пример.
.
Тогда
Перемножение матриц.
Выше было указано, что сложение матриц накладывает условия на размерности слагаемых. Умножение матрицы на матрицу тоже требует выполнения определенных условий для размерностей сомножителей, а именно: число столбцов первого множителя должно равняться числу строк второго.