
- •Устройство и принцип действия.
- •Магнитное поле и параметры обмотки якоря
- •Продольная и поперечная реакция якоря.
- •Характеристики синхронных генераторов
- •Магнитные поля и параметры успокоительной обмотки
- •Характеристики синхронных генераторов. Характеристика холостого хода
- •Характеристика короткого замыкания
- •Опытное определение
- •Отношение короткого замыкания (о. К. З.).
- •Внешняя характеристика
- •Номинальное изменение напряжения синхронного генератора
- •Регулировочная характеристика
- •Нагрузочная характеристика
- •Общая характеристика переходных процессов синхронных машин
- •Гашение магнитного поля и переходные процессы в цепях индуктора Способы гашения поля.
- •Машина без успокоительной обмотки при разомкнутой обмотке якоря.
- •Условия синхронизации генераторов.
- •Синхронизация с помощью лампового синхроноскопа
- •Другие методы синхронизации.
- •Синхронные режимы параллельной работы синхронных машин
- •Изменение реактивной мощности. Режим синхронного компенсатора.
- •Изменение активной мощности. Режимы генератора и двигателя.
- •Работа синхронной машины при постоянной мощности и переменном возбуждении
- •Асинхронный режим невозбужденной синхронной машины
- •Схемы замещения и их параметры.
- •Асинхронный режим возбужденной синхронной машины
- •Самовозбуждение синхронной машины
- •Асинхронное самовозбуждение
- •Синхронные двигатели Применение синхронных двигателей.
- •Способы пуска синхронных двигателей.
- •Векторные диаграммы синхронных двигателей
- •Рабочие характеристики синхронного двигателя
- •Синхронные компенсаторы
- •Работа синхронных генераторов при несимметричной нагрузке
- •Потери энергии и нагрев ротора.
- •Вибрация.
- •Колебания синхронных машин
- •Вынужденные колебания
Продольная и поперечная реакция якоря.
Рассмотрим действие реакции якоря многофазной синхронной машины при установившейся симметричной нагрузке. Для наглядности будем иметь в виду двухполюсную машину и предположим, что она работает в режиме генератора. Получаемые результаты нетрудно
распространить также на двигательный режим работы. Ради простоты и наглядности на рискаждая фаза обмотки изображена в виде одного витка с полным шагом {А—X, В—У, С—Z), буквами N, S указана полярность поля возбуждения, а магнитные линии этого поля не показаны.
Сначала
рассмотрим случай, когда угол сдвига
фаз
между током якоря
и э.д.с.
,
индуктируемой в обмотке якоря током
или полем возбуждения, равен нулю (рис
а).
Ротор вращается с электрической угловой
скоростью
и при положении ротора, изображенном на рис а, э. д. с. фазы А максимальна. Так как = 0, то ток этой фазы также максимален и
Направления токов iа, ib,, ic, нетрудно установить по правилу правой руки, и они указаны на рис. а крестиками и точками. При этих направлениях токов магнитные линии поля реакции якоря в полюсах и теле якоря направлены поперек оси полюсов d. Следовательно, поток реакции якоря Ф„ действует по поперечной оси. Такой характер поля реакции якоря
Поперечная реакция якоря вызывает искажение кривой поля в воздушном зазоре, как и в машинах постоянного тока, но в синхронной машине действие ее не ограничивается этим, так как вращающееся поле поперечной реакции якоря индуктирует также э. д. с. в обмотке якоря. Величина этой э. д. с. определяется ниже.
Если ток I отстает от э. д. с. на = 90°, то максимум тока в фазе А наступает по сравнению со случаем на рис а на четверть периода позднее, когда ротор повернется на 90° по часовой стрелке (рис. б). Токи фаз на рис. б , имеют такие же значения, как и на рис. а, вследствие чего и ориентация магнитного потока якоря в пространстве является такой же.
Если ток I опережает э. д. с. на = -90°, то максимум тока в фазе А наступает по сравнению со случаем на рис. а на четверть периода раньше и в этот момент времени ротор занимает по сравнению с рис. а положение, повернутое на 90° против направления вращения (рис. в).
Токи фаз на рис. в имеют такие же значения, как и на рис а.
Из рис. 32-9, в видно, что при опережающем токе и =-90° реакция якоря также действует по продольной оси, но является по отношению к полю возбуждения чисто намагничивающей, т. е. она увеличивает поток по продольной оси машины (продольная намагничивающая реакция якоря).
Поэтому в общем случае, ток I можно разложить на две составляющие:
Характеристики синхронных генераторов
Среди
разнообразных характеристик синхронных
генераторов отдельную группу составляют
характеристики, которые определяют
зависимость между напряжением на зажимах
якоря U,
током
якоря I
и током возбуждения if
при f
= fн
или п
= nн
= const
в установившемся режиме работы. Эти
характеристики дают наглядное
представление о ряде основных свойств
синхронных генераторов.
Они могут быть построены по расчетным данным, с помощью векторных диаграмм, или по данным соответствующих опытов.
Характеристики явнополюсных и неявнополюсных генераторов в основном одинаковы.
Схемы для снятия рассматриваемых ниже характеристик опытным путем изображены на рис. На рис. а обмотка якоря Я нагружается с помощью симметричных регулируемых нагрузочных сопротивлений Zнг.
(например, трехфазный реостат и трехфазная индуктивная катушка, включаемые параллельно).
На рис. б генератор нагружается на сеть Uc через индукционный регулятор напряжения или регулируемый трехфазный трансформатор, или автотрансформатор РТ. Активная мощность генератора в обоих случаях регулируется путем изменения момента двигателя, вращающего генератор. В схеме рис. 6 воздействие на РТ изменяет напряжение генератора и его реактивную мощность или cos . На практике удобно пользоваться схемой рис б.
На рисунке предполагается, что обмотка возбуждения 0В питается от постороннего источника. Регулирование тока if в обоих случаях производится с помощью реостата R. Величина cos проверяется по показаниям двух ваттметров.
Все характеристики для наглядности целесообразно строить в относительных единицах.