
- •1. Организационный момент:
- •2. Основной материал:
- •1. Материя, ее свойства и формы существования:
- •2.Научный метод познания:
- •1.Организационный момент:
- •2.Основной материал:
- •1. Понятие механического движения:
- •2. Показать границы применимости классической механики и значение
- •3. Задание положения тела с помощью координат и радиус-вектора:
- •4. Способы описания движения: координатный и векторный:
- •5. Ввести понятия: «траектория», «путь», «перемещение»:
- •6. Основная задача механики:
- •1.Организационный момент.
- •3.Основной материал:
- •1.Организационный момент.
- •3.Основной материал:
- •2. Графическое представление движения: (график движения: X(t) и график
- •I. График движения: X(t).
- •II. График скорости: VX(t)
- •4. Закрепление пройденного материала.
- •1.Организационный момент.
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Относительность движения:
- •4. Закрепление пройденного материала.
- •1.Организационный момент.
- •2.Основной материал:
- •1) Физический диктант №1 (дуэль) по теме: «Первоначальные понятия
- •12. Относительность движения:
- •2) Тестирование №3 по теме: «Первоначальные понятия кинематики.
- •IIрямолинейное равноускоренное движение.
- •1.Организационный момент.
- •2. Итоги тестирования.
- •3.Основной материал:
- •1. Движение с ускорением:
- •2. Равноускоренное движение:
- •4. Закрепление пройденного материала.
- •1.Организационный момент.
- •2.Основной материал:
- •1) Физический диктант №2 (дуэль) по теме: «Прямолинейное равноускореное
- •2) Тестирование №4 по теме: «Прямолинейное равноускореное движени »:
- •I. Движение тел под действием силы тяжести по вертикали.
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1. Понятие свободного падения тел:
- •2. Движение тела под действием силы тяжести по вертикали.
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •3.Основной материал:
- •3) Уравнения движения в скалярном виде:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1. Движение тела под действием силы тяжести брошенного
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Движение по окружности – частный случай криволинейного движения,
- •2) Характеристики движения:
- •3.Угловая скорость (ω):
- •4. Закрепление пройденного материала:
- •Тема 3. Динамика.
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •I закон Ньютона (закон инерции):
- •2 . II закон Ньютона:
- •II закон Ньютона: Равнодействующая сил, приложенных к телу равна произведению массы тела на сообщаемое этой силой ускорение.
- •3. III закон Ньютона (закон взаимодействия:
- •III закон Ньютона: Тела действуют друг на друга силами одинаковой природы, равными по модулю, но противоположными по направлению.
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •3.Основной материал:
- •4. Движение тел в гравитационном поле:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Сила упругости, закон Гука:
- •2) Закон Гука: Сила упругости, возникшая при деформации тела
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Сила трения и ее виды:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Движение тел по наклонной плоскости:
- •2) Движение связанных тел:
- •3) Движение тел по окружности.
- •4. Закрепление пройденного материала:
- •Тема 6. Статика.
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Виды равновесия:
- •4. Закрепление пройденного материала:
- •Тема 7: Законы сохранения в механике.
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •II з.Н. Через : Импульс силы равен изменению импульса
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •3) Теорема о кинетической энергии:
- •4) Работа силы тяжести:
- •5) Работа силы упругости:
- •6) Работа силы трения:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Закон сохранения механической энергии:
- •4. Закрепление пройденного материала:
- •Тема 3. Молекулярная физика.
- •1.Организационный момент:
- •3.Основной материал:
- •2) Метод измерений размеров молекулы:
- •1 Молекулы →
- •3) Величины, характеризующие молекулы:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Самостоятельная работа к §60,61 по вопросам:
- •2) Выяснение степени уяснения изученного материала в результате
- •3) Агрегатные состояния вещества:
- •5. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •2) Характеристики идеального газа:
- •II. Скорость теплового движения (средняя):
- •III. Среднее значение квадрата скорости:
- •3) Вывод уравнения мкт идеального газа и трактовка этого уравнения:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Самостоятельная работа учащихся § 66 по вопросам:
- •Определение температуры.
- •Абсолютная температура.
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •3.Основной материал:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •I. Уравнение Менделеева-Клапейрона:
- •II. Газовые законы.
- •4. Закрепление пройденного материала:
- •3) «Бойль, Мариотт»;
- •4) «Гей-Люссак»;
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Испарение; зависимость интенсивности испарения от температуры,
- •III. Динамическое равновесие
- •IV. Давление насыщенного пара.
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •Поверхностное натяжение
- •Тема 3: термодинамика.
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1. Внутренняя энергия.
- •2. Способы изменения внутренней энергии.
- •4. Закрепление пройденного материала.
- •5. Домашнее задание:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Совершение работы:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •Н агреватель (т1);
- •Рабочее тело (газ) a’;
- •Холодильник (t2).
- •1.Организационный момент:
- •3.Основной материал:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •3.Основной материал:
- •2) Электростатическое поле и его свойства:
- •II. Электрическое поле (открыто Фарадеем и Максвеллом)
- •4) Принцип суперпозиций полей:
- •IV. Принцип суперпозиций полей:
- •5) Графическое изображение электрических полей:
- •1.Организационный момент:
- •3.Основной материал:
- •2) Явление электростатической индукции:
- •3) Диэлектрики в электростатическом поле:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Работа электростатического поля:
- •2) Потенциальная электростатического поля:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Электроемкость (с):
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •2) Характеристики электрического тока:
- •3) Закон Ома для участка цепи:
- •4) Условия существования электрического тока:
- •5) Действие электрического тока:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Работа тока:
- •2) Закон Ленца - Джоуля:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •3) Закон Ома для полной цепи:
- •3) Решить полученную систему (6) уравнений.
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •1) Электрическая проводимость металлов:
- •2) Зависимость r проводника от температуры:
- •3) Сверхпроводимость:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2.Проверка домашнего задания:
- •3.Основной материал:
- •2) Виды проводимости:
- •1. Собственная проводимость:
- •2. Примесная проводимость:
- •4. Полупроводниковые приборы:
- •1. Полупроводниковый диод.
- •4. Закрепление пройденного материала:
- •3) Решить полученную систему (6) уравнений.
1.Организационный момент:
1.Отчет консультантов о готовности класса к работе.
2. Итоги тестирования и самостоятельной работы №4.
2.Проверка домашнего задания:
1. Фронтальный опрос.
3.Основной материал:
1. Основные силы природы:
1. Гравитационные
(
)
(слабые).
2. Электромагнитные
(
)
3. Ядерные (самые мощные).
2. Сила всемирного тяготения:
Закон всемирного тяготения был открыт И. Ньютоном в 1682 году. Еще в 1665 году 23-летний Ньютон высказал предположение, что силы, удерживающие Луну на ее орбите, той же природы, что и силы, заставляющие яблоко падать на Землю. По его гипотезе между всеми телами Вселенной действуют силы притяжения (гравитационные силы), направленные по линии, соединяющей центры масс (рис. 1.10.1). У тела в виде однородного шара центр масс совпадает с центром шара.
Гравитационные
силы притяжения между телами.
В последующие годы Ньютон пытался найти физическое объяснение законам движения планет, открытых астрономом И. Кеплером в начале XVII века, и дать количественное выражение для гравитационных сил. Зная как движутся планеты, Ньютон хотел определить, какие силы на них действуют. Такой путь носит название обратной задачи механики. Если основной задачей механики является определение координат тела известной массы и его скорости в любой момент времени по известным силам, действующим на тело, и заданным начальным условиям (прямая задача механики), то при решении обратной задачи необходимо определить действующие на тело силы, если известно, как оно движется. Решение этой задачи и привело Ньютона к открытию закона всемирного тяготения.
При удалении от поверхности Земли сила земного тяготения и ускорение свободного падения изменяются обратно пропорционально квадрату расстояния r до центра Земли. Рис. 1.10.2 иллюстрирует изменение силы тяготения, действующей на космонавта в космическом корабле при его удалении от Земли. Сила, с которой космонавт притягивается к Земле вблизи ее поверхности, принята равной 700 Н.
Изменение силы
тяготения, действующей на космонавта
при удалении от Земли.
Примером системы двух взаимодействующих тел может служить система Земля–Луна. Луна находится от Земли на расстоянии rЛ = 3,84·106 м. Это расстояние приблизительно в 60 раз превышает радиус Земли RЗ. Следовательно, ускорение свободного падения aЛ, обусловленное земным притяжением, на орбите Луны составляет
С таким ускорением, направленным к центру Земли, Луна движется по орбите. Следовательно, это ускорение является центростремительным ускорением. Его можно рассчитать по кинематической формуле для центростремительного ускорения (см. §1.6):
где T = 27,3 сут – период обращения Луны вокруг Земли. Совпадение результатов расчетов, выполненных разными способами, подтверждает предположение Ньютона о единой природе силы, удерживающей Луну на орбите, и силы тяжести.
Собственное гравитационное поле Луны определяет ускорение свободного падения gЛ на ее поверхности. Масса Луны в 81 раз меньше массы Земли, а ее радиус приблизительно в 3,7 раза меньше радиуса Земли. Поэтому ускорение gЛ определится выражением:
В условиях такой слабой гравитации оказались космонавты, высадившиеся на Луне. Человек в таких условиях может совершать гигантские прыжки. Например, если человек в земных условиях подпрыгивает на высоту 1 м, то на Луне он мог бы подпрыгнуть на высоту более 6 м.
Рассмотрим теперь вопрос об искусственных спутниках Земли. Искусственные спутники движутся за пределами земной атмосферы, и на них действуют только силы тяготения со стороны Земли. В зависимости от начальной скорости траектория космического тела может быть различной (см. §1.24). Мы рассмотрим здесь только случай движения искусственного спутника по круговой околоземной орбите. Такие спутники летают на высотах порядка 200–300 км, и можно приближенно принять расстояние до центра Земли равным ее радиусу RЗ. Тогда центростремительное ускорение спутника, сообщаемое ему силами тяготения, приблизительно равно ускорению свободного падения g. Обозначим скорость спутника на околоземной орбите через υ1. Эту скорость называют первой космической скоростью. Используя кинематическую формулу для центростремительного ускорения (см. §1.6), получим:
Двигаясь с такой
скоростью, спутник облетал бы Землю за
время
На самом деле период обращения спутника по круговой орбите вблизи поверхности Земли несколько превышает указанное значение из-за отличия между радиусом реальной орбиты и радиусом Земли.
Движение спутника можно рассматривать как свободное падение, подобное движению снарядов или баллистических ракет. Различие заключается только в том, что скорость спутника настолько велика, что радиус кривизны его траектории равен радиусу Земли.
Для спутников, движущихся по круговым траекториям на значительном удалении от Земли, земное притяжение ослабевает обратно пропорционально квадрату радиуса r траектории. Скорость спутника υ находится из условия
Таким образом, на высоких орбитах скорость движения спутников меньше, чем на околоземной орбите.
Период T обращения такого спутника равен
Здесь T1 – период обращения спутника на околоземной орбите. Период обращения спутника растет с увеличением радиуса орбиты. Нетрудно подсчитать, что при радиусе r орбиты, равном приблизительно 6,6RЗ, период обращения спутника окажется равным 24 часам. Спутник с таким периодом обращения, запущенный в плоскости экватора, будет неподвижно висеть над некоторой точкой земной поверхности. Такие спутники используются в системах космической радиосвязи. Орбита с радиусом r = 6,6R3 называется геостационарной.
Т.к тела взаимодействуют по III закону Ньютона => к примеру: все тела
притягиваются к Солнцу, а Солнце притягивается к планетам, а так же
планеты взаимодействуют между собой => все тела во вселенной
притягиваются друг к другу. (Земля и Луна притягиваются с F=2∙1020H).
В1666 году Ньютон (в 24 года) открыл эту силу:
1)
2)
но по II закону Ньютона F=ma => F~a
из 1) и 2) =>
- Закон
всемирного тяготения
где
- гравитационная
постоянная
(в 1798 году измерена Генри Кавендишем на крутильных весах)
G показывает силу притяжения тел массой 1кг любого расположения на
R=1м друг от друга.
Закон всемирного тяготения верен:
для материальных точек;
для шарообразных тел со сферическим распределением вещества;
для шара большего R и материальной точки.
Закон всемирного тяготения: Все тела во Вселенной притягиваются друг к другу с силой, модуль которой пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними.
3. Сила тяжести (частный случай Fвс.тяг ) – это сила с которой все тела
притягиваются к Земле.
по II з.Н.:
где
не зависит от массы
тела
для всех тел.
действующей на
тело массой 1кг.
вблизи Земли
на высоте над Землей
=> чем >h, тем <g => <FТ (меньше сила гравитационного поля).