
- •Общая теория статистики
- •Глава 1. Понятие о статистике................. 13
- •Глава 2. Организация статистики. Статистическое наблюдение ...... 32
- •Глава 3. Статистические показатели ............. 82
- •Глава 4. Представление статистических данных: таблицы и графики. 100
- •Глава 5. Средние величины и изучение вариации. ... 120
- •Глава 6. Группировка........................ 172
- •Глава 7. Выборочное наблюдение. Испытание статистических гипотез .. 214
- •Глава 8. Статистическая проверка гипотез........ 270
- •Глава 9. Корреляционно-регрессионный анализ и моделирование статистических связей . . . 320
- •Глава 10. Системы регрессионных уравнений....... 392
- •Глава 11. Статистический анализ неколичественных переменных . 411
- •Глава 12. Статистическое изучение динамики....... 445
- •Глава 13. Индексы ........................... 526
- •Глава 14. Статистическое изучение структуры совокупности и ее изменений ... 597
- •Предисловие
- •Глава 1. Понятие о статистике
- •1.1. Что такое статистика
- •1.2. Статистическая закономерность. Статистические совокупности
- •1.3. Признаки и их классификация
- •1.4. Определение предмета статистики — основа статистической методологии
- •Рекомендуемая литература
- •2 Глава. Организация статистики. Статистическое наблюдение
- •2.1. Организация государственной статистики в Российской Федерации
- •2.2. Важнейшие международные организации и их статистические службы
- •2.3. Требования, предъявляемые к собираемым данным. Формы организации и виды статистического наблюдения
- •2.4. Подготовка статистического наблюдения
- •2.5. Статистическая отчетность
- •2.6. Ошибки статистического наблюдения. Методы контроля данных наблюдения
- •2.7. Реформирование российской государственной Статистики
- •Рекомендуемая литература
- •3. Глава. Статистические показатели
- •3.1. Сущность и значение статистических показателей.
- •3.2. Классификация статистических показателей
- •3.3. Общие принципы построения относительных статистических показателей
- •3.4. Понятие о системах статистических показателей
- •3.5. Функции статистических показателей
- •Рекомендуемая литература
- •4 Глава. Представление статистических данных: таблицы и графики
- •4.1. Статистические таблицы
- •4.2. Основные виды графиков
- •4.3. Картограммы и картодиаграммы
- •Рекомендуемая литература
- •5 Глава. Средние величины и изучение вариации
- •5.1. Однородность и вариация массовых явлений
- •5.2. Средняя арифметическая величина
- •5.3. Другие формы средних величин
- •5.4. Средняя величина как выражение закономерности
- •5.5. Вариация массовых явлений
- •5.6. Построение вариационного ряда. Виды рядов. Ранжирование данных
- •5.7. Структурные характеристики вариационного ряда
- •5.8. Показатели размера и интенсивности вариации
- •5.9. Моменты распределения и показатели его формы
- •5.10. Предельно возможные значения показателей вариации и их применение
- •Рекомендуемая литература
- •6 Глава. Группировка
- •6.1. Значение и сущность группировки
- •6.2. Виды группировок
- •6.3. Многомерные группировки
- •Рекомендуемая литература
- •7 Глава. Выборочное наблюдение. Испытание статистических гипотез
- •7.1. Причины применения выборочного наблюдения. Дескриптивная статистика и статистический вывод
- •7.2. Способы отбора, обеспечивающие репрезентативность выборки. Виды выборки
- •7.3. Ошибка выборки
- •7.4. Влияние вида выборки на величину ошибки выборки
- •7.5. Задачи, решаемые при применении выборочного метода
- •7.6. Распространение данных выборочного наблюдения на генеральную совокупность
- •7.7. Малая выборка
- •7.8. Примеры применения выборочного метода
- •Рекомендуемая литература
- •8 Глава. Статистическая проверка гипотез
- •8.1. Общие понятия
- •8.2. Проверка гипотезы о законе распределения
- •8.3. Проверка гипотезы о связи на основе критерия x2 (хи-квадрат)
- •8.4. Проверка гипотезы о средних величинах
- •8.5. Основы дисперсионного анализа
- •8.6. Некоторые непараметрические критерии
- •Рекомендуемая литература
- •9 Глава. Корреляционно-регрессионный анализ и моделирование статистических связей
- •9.1. Понятие о статистической и корреляционной связи
- •9.2. Условия применения и ограничения корреляционно-регрессионного метода
- •9.3. Задачи корреляционно-регрессионного анализа и моделирования
- •3. Задана прогнозирования возможных значений результативного признака при задаваемых значениях факторных признаков.
- •9.4. Вычисление и интерпретация параметров парной линейной регрессии
- •9.5. Статистическая оценка надежности параметров парной регрессии и корреляции
- •9.6. Применение линейного уравнения парной регрессии
- •9.7. Вычисление параметров парной линейной регрессии на основе аналитической группировки
- •9.8. Параболическая корреляция
- •9.9. Гиперболическая корреляция
- •9.10. Множественное уравнение регрессии
- •9.11. Меры тесноты связей в многофакторной системе
- •9.13. Корреляционно-регрессионные модели и их применение в анализе и прогнозе
- •Рекомендуемая литература
- •10 Глава. Системы регрессионных уравнений
- •10.1. Понятие о системах регрессионных уравнений
- •10.2. Проблемы решения систем взаимосвязанных уравнений
- •10.4. Косвенный метод наименьших квадратов
- •10.5. Двойной метод наименьших квадратов
- •Рекомендуемая литература
- •11 Глава. Статистический анализ неколичественных переменных
- •11.1. Зависимость методов измерений связей от уровня измерения переменных
- •11.2. Измерение связи между двумя дихотомическими переменными
- •11.5. Другие меры связей между номинальными переменными
- •11.6. Коэффициенты корреляции рангов
- •Рекомендуемая литература
- •12 Глава. Статистическое изучение динамики
- •12.1. Виды динамических рядов. Сопоставимость данных в изучении динамики
- •12.2. Элементы динамики: основная тенденция и колебания
- •12.3. Показатели, характеризующие тенденцию динамики
- •12.4. Особенности показателей динамики для рядов, состоящих из относительных уровней
- •12.5. Средние показатели тенденции динамики
- •12.6. Методы выявления типа тенденции динамики
- •12.7. Методика измерения параметров тренда
- •12.8. Методика изучения и показатели колеблемости
- •12.9. Измерение устойчивости в динамике
- •12.10. Сезонные колебания и полное разложение дисперсии уровней динамического ряда
- •12.11. Прогнозирование на основе тренда и колеблемости
- •12.12. Корреляция рядов динамики
- •Рекомендуемая литература
- •13 Глава. Индексы
- •13.1. Понятие индекса
- •13.2. Индекс как показатель центральной тенденции (индекс средний из индивидуальных)
- •13.3. Агрегатные индексы. Система индексов
- •13.4. Свойства индексов
- •13.5. Индексный анализ взвешенной средней. Индекс структуры
- •13.6. Построение индексов при обобщении данных по единицам совокупности и по элементам
- •13.7. Границы и условия применения индексного метода
- •13.8. Комплексное использование индексного и регрессионного методов анализа
- •13.9. Примеры использования индексов в экономико-статистических расчетах
- •Рекомендуемая литература
- •14 Глава. Статистическое изучение структуры совокупности и ее изменений
- •14.1. Показатели простой (одномерной) структуры
- •14.2. Показатели иерархической (древовидной) структуры
- •14.3. Показатели балансовой структуры
- •14.4. Показатели многомерной структуры с пересекающимися признаками
- •14.6. Показатели концентрации, специализации, монополизации. Многомерная структура
- •14.7. Абсолютные и относительные показатели изменения структуры
- •14,8. Ранговые показатели изменения структуры
- •Рекомендуемая литература
- •Приложения
- •1. Статистико-математические таблицы
- •2. Основные принципы официальной статистики в регионе Европейской экономической комиссии
12.11. Прогнозирование на основе тренда и колеблемости
Прогнозирование возможных значений признаков изучаемого объекта — одна из основных задач науки. В ее решении роль статистических методов очень значительна. Одним из них является расчет прогнозов на основе тренда и колеблемости динамического ряда до настоящего времени. Если мы будем знать, как быстро и в каком направлении изменились уровни какого-то признака, то сможем узнать, какого значения достигнет уровень спустя известное время. Методика статистического прогноза по тренду и колеблемости основана на их экстраполяции, т.е. на предположении, что параметры тренда и колебаний сохраняются до прогнозируемого периода. Такая экстраполяция справедлива, если система развивается эволюционно в достаточно стабильных условиях. Чем крупнее система, тем выше вероятность сохранения параметров ее изменения, конечно, на срок не слишком большой! Обычно рекомендуют, чтобы срок прогноза не превышал 1/3 длительности базы расчета тренда.
В отличие от прогноза на основе регрессионного уравнения прогноз по тренду учитывает факторы развития только в неявном виде, и это не позволяет «проигрывать» разные варианты прогнозов при разных возможных значениях факторов, влияющих на изучаемый признак. Зато прогноз по тренду охватывает все факторы, в то время как в регрессионную модель невозможно включить в явном виде более 10—20 факторов в самом лучшем случае.
511
Сущность прогноза на основе тренда хорошо иллюстрируется следующим рассказом о греческом философе Диогене, жившем в большой бочке на берегу Саронического залива, недалеко от афинского порта Пирея. Как-то вечером Диогена стал окликать снаружи неизвестный. Диоген вышел к нему. «Скажи, мудрый человек, — спросил путник, — дойду ли я к закату в Афины?» Диоген посмотрел на него и сказал: «Иди!» Путник повторил свой вопрос. «Иди!», — закричал Диоген, и путник, пожав плечами, побрел по берегу. «Вернись!», — снова закричал Диоген, и путник вернулся к нему. «Вот теперь я тебе скажу, что до заката ты не дойдешь до Афин. Оставайся у меня». «А почему же ты сразу мне это не сказал, а прогнал меня?» Диоген усмехнулся: «А как же я скажу, дойдешь ли ты до Афин, если я не видел, как быстро ты ходишь?» Прогноз по тренду — это и есть Диогенов прогноз на основе того, как изучаемая система «шла» до настоящего времени.
Рассмотрим методику прогнозирования
по тренду с учетом колеблемости на
примере цен на нетопливные товары
развивающихся стран, тренд и колеблемость
которых были измерены в подразд. 12.6 и
12.7 (табл. 12.5 и 12.8). За основу прогнозов
возьмем параметры, полученные методом
многократного скользящего выравнивания.
Параллельно будет показана и методика
расчетов при однократном выравнивании.
512
Это означает, что наиболее вероятное значение индекса цен на нетопливные товары развивающихся стран в 1998 г. составит около 89% к уровню цен 1990 г., принятому за 100%. Однако параметры тренда, полученные по ограниченному числу уровней ряда, — это лишь выборочные средние оценки, не свободные от влияния распределения колебаний отдельных уровней во времени, как уже сказано ранее. При изменении базы расчета тренда, если, скажем, взять 1977—1993 гг. или 1981 — 1997 гг., были бы получены несколько иные значения параметров, а значит, и другие значения р1998- Прогноз должен быть вероятным, как всякое суждение о будущем.
513
514
Из имеющейся информации нельзя извлечь больше, чем в ней содержится: как в физике действует закон сохранения массы и энергии, импульса («количества движения»), так здесь действует закон сохранения информации: увеличивая точность, мы понижаем надежность, увеличивая надежность — понижаем точность. Методика анализа и прогнозирования тоже имеет значение. Она определяет степень полноты извлечения информации, содержащейся в исходном ряду динамики. С помощью методики многократного выравнивания удается более полно извлечь информацию о тренде и уменьшить среднюю ошибку прогноза его положения в прогнозируемом периоде с 5,44 до 4,39. Однако, как видно из (12.41), главной составляющей ошибки прогноза конкретного уровня в нашем расчете является не ошибка прогноза положения тренда, а колеблемость уровней около тренда. Поэтому ошибка прогноза конкретного уровня незначительно сократилась за счет многократного выравнивания. При слабой колеблемости уровней и прогнозировании на значительное удаление от базы главную роль станет играть ошибка положения тренда. Тогда многократное выравнивание даст значительное сокращение средней ошибки прогноза конкретных уровней. Но в любом случае эта ошибка всегда больше показателя колеблемости уровней — среднего квадратического отклонения Sy^K В указанной литературе содержатся формулы для вычисления средней ошибки прогноза положения линии тренда при параболической и экспоненциальной его формах . Если средняя ошибка положения тренда вычислена, ошибку конкретного уровня при любой форме тренда вычисляют по формуле (12.41).
--------------------------------------
'Четыркин Е. М. Статистические методы прогнозирования. — М.: Статистика, 1977.
2Юзбашев М. М., Манелля А. И. Статистический анализ тенденций и колеблемости. — М.: Финансы и статистика, 1983.
515