
- •Общая теория статистики
- •Глава 1. Понятие о статистике................. 13
- •Глава 2. Организация статистики. Статистическое наблюдение ...... 32
- •Глава 3. Статистические показатели ............. 82
- •Глава 4. Представление статистических данных: таблицы и графики. 100
- •Глава 5. Средние величины и изучение вариации. ... 120
- •Глава 6. Группировка........................ 172
- •Глава 7. Выборочное наблюдение. Испытание статистических гипотез .. 214
- •Глава 8. Статистическая проверка гипотез........ 270
- •Глава 9. Корреляционно-регрессионный анализ и моделирование статистических связей . . . 320
- •Глава 10. Системы регрессионных уравнений....... 392
- •Глава 11. Статистический анализ неколичественных переменных . 411
- •Глава 12. Статистическое изучение динамики....... 445
- •Глава 13. Индексы ........................... 526
- •Глава 14. Статистическое изучение структуры совокупности и ее изменений ... 597
- •Предисловие
- •Глава 1. Понятие о статистике
- •1.1. Что такое статистика
- •1.2. Статистическая закономерность. Статистические совокупности
- •1.3. Признаки и их классификация
- •1.4. Определение предмета статистики — основа статистической методологии
- •Рекомендуемая литература
- •2 Глава. Организация статистики. Статистическое наблюдение
- •2.1. Организация государственной статистики в Российской Федерации
- •2.2. Важнейшие международные организации и их статистические службы
- •2.3. Требования, предъявляемые к собираемым данным. Формы организации и виды статистического наблюдения
- •2.4. Подготовка статистического наблюдения
- •2.5. Статистическая отчетность
- •2.6. Ошибки статистического наблюдения. Методы контроля данных наблюдения
- •2.7. Реформирование российской государственной Статистики
- •Рекомендуемая литература
- •3. Глава. Статистические показатели
- •3.1. Сущность и значение статистических показателей.
- •3.2. Классификация статистических показателей
- •3.3. Общие принципы построения относительных статистических показателей
- •3.4. Понятие о системах статистических показателей
- •3.5. Функции статистических показателей
- •Рекомендуемая литература
- •4 Глава. Представление статистических данных: таблицы и графики
- •4.1. Статистические таблицы
- •4.2. Основные виды графиков
- •4.3. Картограммы и картодиаграммы
- •Рекомендуемая литература
- •5 Глава. Средние величины и изучение вариации
- •5.1. Однородность и вариация массовых явлений
- •5.2. Средняя арифметическая величина
- •5.3. Другие формы средних величин
- •5.4. Средняя величина как выражение закономерности
- •5.5. Вариация массовых явлений
- •5.6. Построение вариационного ряда. Виды рядов. Ранжирование данных
- •5.7. Структурные характеристики вариационного ряда
- •5.8. Показатели размера и интенсивности вариации
- •5.9. Моменты распределения и показатели его формы
- •5.10. Предельно возможные значения показателей вариации и их применение
- •Рекомендуемая литература
- •6 Глава. Группировка
- •6.1. Значение и сущность группировки
- •6.2. Виды группировок
- •6.3. Многомерные группировки
- •Рекомендуемая литература
- •7 Глава. Выборочное наблюдение. Испытание статистических гипотез
- •7.1. Причины применения выборочного наблюдения. Дескриптивная статистика и статистический вывод
- •7.2. Способы отбора, обеспечивающие репрезентативность выборки. Виды выборки
- •7.3. Ошибка выборки
- •7.4. Влияние вида выборки на величину ошибки выборки
- •7.5. Задачи, решаемые при применении выборочного метода
- •7.6. Распространение данных выборочного наблюдения на генеральную совокупность
- •7.7. Малая выборка
- •7.8. Примеры применения выборочного метода
- •Рекомендуемая литература
- •8 Глава. Статистическая проверка гипотез
- •8.1. Общие понятия
- •8.2. Проверка гипотезы о законе распределения
- •8.3. Проверка гипотезы о связи на основе критерия x2 (хи-квадрат)
- •8.4. Проверка гипотезы о средних величинах
- •8.5. Основы дисперсионного анализа
- •8.6. Некоторые непараметрические критерии
- •Рекомендуемая литература
- •9 Глава. Корреляционно-регрессионный анализ и моделирование статистических связей
- •9.1. Понятие о статистической и корреляционной связи
- •9.2. Условия применения и ограничения корреляционно-регрессионного метода
- •9.3. Задачи корреляционно-регрессионного анализа и моделирования
- •3. Задана прогнозирования возможных значений результативного признака при задаваемых значениях факторных признаков.
- •9.4. Вычисление и интерпретация параметров парной линейной регрессии
- •9.5. Статистическая оценка надежности параметров парной регрессии и корреляции
- •9.6. Применение линейного уравнения парной регрессии
- •9.7. Вычисление параметров парной линейной регрессии на основе аналитической группировки
- •9.8. Параболическая корреляция
- •9.9. Гиперболическая корреляция
- •9.10. Множественное уравнение регрессии
- •9.11. Меры тесноты связей в многофакторной системе
- •9.13. Корреляционно-регрессионные модели и их применение в анализе и прогнозе
- •Рекомендуемая литература
- •10 Глава. Системы регрессионных уравнений
- •10.1. Понятие о системах регрессионных уравнений
- •10.2. Проблемы решения систем взаимосвязанных уравнений
- •10.4. Косвенный метод наименьших квадратов
- •10.5. Двойной метод наименьших квадратов
- •Рекомендуемая литература
- •11 Глава. Статистический анализ неколичественных переменных
- •11.1. Зависимость методов измерений связей от уровня измерения переменных
- •11.2. Измерение связи между двумя дихотомическими переменными
- •11.5. Другие меры связей между номинальными переменными
- •11.6. Коэффициенты корреляции рангов
- •Рекомендуемая литература
- •12 Глава. Статистическое изучение динамики
- •12.1. Виды динамических рядов. Сопоставимость данных в изучении динамики
- •12.2. Элементы динамики: основная тенденция и колебания
- •12.3. Показатели, характеризующие тенденцию динамики
- •12.4. Особенности показателей динамики для рядов, состоящих из относительных уровней
- •12.5. Средние показатели тенденции динамики
- •12.6. Методы выявления типа тенденции динамики
- •12.7. Методика измерения параметров тренда
- •12.8. Методика изучения и показатели колеблемости
- •12.9. Измерение устойчивости в динамике
- •12.10. Сезонные колебания и полное разложение дисперсии уровней динамического ряда
- •12.11. Прогнозирование на основе тренда и колеблемости
- •12.12. Корреляция рядов динамики
- •Рекомендуемая литература
- •13 Глава. Индексы
- •13.1. Понятие индекса
- •13.2. Индекс как показатель центральной тенденции (индекс средний из индивидуальных)
- •13.3. Агрегатные индексы. Система индексов
- •13.4. Свойства индексов
- •13.5. Индексный анализ взвешенной средней. Индекс структуры
- •13.6. Построение индексов при обобщении данных по единицам совокупности и по элементам
- •13.7. Границы и условия применения индексного метода
- •13.8. Комплексное использование индексного и регрессионного методов анализа
- •13.9. Примеры использования индексов в экономико-статистических расчетах
- •Рекомендуемая литература
- •14 Глава. Статистическое изучение структуры совокупности и ее изменений
- •14.1. Показатели простой (одномерной) структуры
- •14.2. Показатели иерархической (древовидной) структуры
- •14.3. Показатели балансовой структуры
- •14.4. Показатели многомерной структуры с пересекающимися признаками
- •14.6. Показатели концентрации, специализации, монополизации. Многомерная структура
- •14.7. Абсолютные и относительные показатели изменения структуры
- •14,8. Ранговые показатели изменения структуры
- •Рекомендуемая литература
- •Приложения
- •1. Статистико-математические таблицы
- •2. Основные принципы официальной статистики в регионе Европейской экономической комиссии
Рекомендуемая литература
1. Елисеева И. И. Статистические методы измерения связей. — Л.: Изд-во Ленингр. ун-та, 1982.
2. Елисеева И. И., Рукавишников В. О. Логика прикладного статистического анализа. — М.: Финансы и статистика, 1982.
3. Крастинь О. П. Разработка и интерпретация моделей корреляционных связей в экономике. — Рига: Зинатне, 1983.
4. Кулаичев А. П. Методы и средства анализа данных в среде Windows. Stadia 6.0. — М.: НПО «Информатика и компьютеры», 1996.
5. Статистическое моделирование и прогнозирование: Учеб. пособие / Под ред. А. Г. Гранберга. — М.: Финансы и статистика, 1990.
6. Ферстер Э,, Ренц Б. Методы корреляционного и регрессионного анализа. Руководство для экономистов: Пер. с нем. — М.: Финансы и статистика, 1983.
10 Глава. Системы регрессионных уравнений
10.1. Понятие о системах регрессионных уравнений
Выше были последовательно рассмотрены методы анализа связи одного результативного показателя с одним фактором (парная корреляция и парная регрессия), затем — связь одного результативного показателя с несколькими факторами (множественная корреляция и множественная регрессия). В реальных экономических, технологических, природных и социальных системах многие результативные и факторные признаки взаимосвязаны. В этом случае статистическими методами определяется не один результативный признак, а несколько, каждый из которых имеет ряд факторов, причем сами результативные признаки также связаны друг с другом.
392
393
10.2. Проблемы решения систем взаимосвязанных уравнений
В чем заключается необходимость использовать при решении рекуррентных уравнений не фактические значения «вышележащих», т.е. предшествующих по графу связей, играющих роль причины эндогенных переменных, а их расчетные значения, полученные из решения предыдущего уравнения? Разобраться в этой проблеме тем более необходимо, что она относится не только к рекуррентным, но и ко всем иным системам взаимосвязанных регрессионных уравнений. Если бы в число экзогенных переменных, входящих в правые части уравнений, входили все факторы, определяющие вариацию каждой эндогенной переменной, т.е. имели бы место
394
395
396
397
398
399
кации можно выразить, и не используя приведенную форму уравнений, так: в правой части структурного уравнения должно отсутствовать столько же экзогенных переменных, входящих в структурные уравнения эндогенных переменных, входящих в правую часть данного структурного уравнения, сколько входит в нее эндогенных переменных.
В нашем примере, исходя из первой формулировки, имеем в каждом приведенном уравнении пять параметров, включая свободные члены. В структурных уравнениях (10.2) было тоже по пять параметров, т.е. условие точной идентификации соблюдено. В соответствии со второй формулировкой в правой части каждого из структурных уравнений отсутствует по одной экзогенной переменной, входящей в уравнение эндогенной переменной, которая входит в эту правую часть: в первом уравнении нет^, входящего в уравнение у2 , а во втором нет х2, входящего в уравнение ух. Число отсутствующих экзогенных переменных равно числу входящих в правые части структурных уравнений эндогенных переменных — условие точной идентификации соблюдено.
Если в правую часть структурных уравнений входят все экзогенные переменные, имеющиеся в уравнениях других эндогенных переменных, и еще эта (эти) эндогенные переменные, то в структурных уравнениях будет больше параметров, чем в приведенных. Тогда из меньшего числа найденных коэффициентов окажется невозможно определить большее число коэффициентов структурного уравнения. Система решения не имеет и называется неидентифицируемой. То же будет и при отсутствии в правой части структурных уравнений меньшего числа экзогенных переменных, чем там присутствует эндогенных. Положение неидентификации аналогично неразрешимости системы, включающей меньше уравнений, чем в них включено неизвестных величин.
Аналогично и обратное положение: если число уравнений больше, чем число входящих в них неизвестных, то имеется множество возможных решений и возникает проблема выбора одного из них. Если в нашей системе уравнений отсутствует в каждом из них или в одном больше экзогенных переменных, чем в правой части имеется эндогенных переменных, то в приведенных уравнениях окажется больше параметров, чем в структурных уравнениях. Однозначного решения
400
(перехода) система не имеет. Такая система уравнений называется сверхидентифицируемой.