
- •Общая теория статистики
- •Глава 1. Понятие о статистике................. 13
- •Глава 2. Организация статистики. Статистическое наблюдение ...... 32
- •Глава 3. Статистические показатели ............. 82
- •Глава 4. Представление статистических данных: таблицы и графики. 100
- •Глава 5. Средние величины и изучение вариации. ... 120
- •Глава 6. Группировка........................ 172
- •Глава 7. Выборочное наблюдение. Испытание статистических гипотез .. 214
- •Глава 8. Статистическая проверка гипотез........ 270
- •Глава 9. Корреляционно-регрессионный анализ и моделирование статистических связей . . . 320
- •Глава 10. Системы регрессионных уравнений....... 392
- •Глава 11. Статистический анализ неколичественных переменных . 411
- •Глава 12. Статистическое изучение динамики....... 445
- •Глава 13. Индексы ........................... 526
- •Глава 14. Статистическое изучение структуры совокупности и ее изменений ... 597
- •Предисловие
- •Глава 1. Понятие о статистике
- •1.1. Что такое статистика
- •1.2. Статистическая закономерность. Статистические совокупности
- •1.3. Признаки и их классификация
- •1.4. Определение предмета статистики — основа статистической методологии
- •Рекомендуемая литература
- •2 Глава. Организация статистики. Статистическое наблюдение
- •2.1. Организация государственной статистики в Российской Федерации
- •2.2. Важнейшие международные организации и их статистические службы
- •2.3. Требования, предъявляемые к собираемым данным. Формы организации и виды статистического наблюдения
- •2.4. Подготовка статистического наблюдения
- •2.5. Статистическая отчетность
- •2.6. Ошибки статистического наблюдения. Методы контроля данных наблюдения
- •2.7. Реформирование российской государственной Статистики
- •Рекомендуемая литература
- •3. Глава. Статистические показатели
- •3.1. Сущность и значение статистических показателей.
- •3.2. Классификация статистических показателей
- •3.3. Общие принципы построения относительных статистических показателей
- •3.4. Понятие о системах статистических показателей
- •3.5. Функции статистических показателей
- •Рекомендуемая литература
- •4 Глава. Представление статистических данных: таблицы и графики
- •4.1. Статистические таблицы
- •4.2. Основные виды графиков
- •4.3. Картограммы и картодиаграммы
- •Рекомендуемая литература
- •5 Глава. Средние величины и изучение вариации
- •5.1. Однородность и вариация массовых явлений
- •5.2. Средняя арифметическая величина
- •5.3. Другие формы средних величин
- •5.4. Средняя величина как выражение закономерности
- •5.5. Вариация массовых явлений
- •5.6. Построение вариационного ряда. Виды рядов. Ранжирование данных
- •5.7. Структурные характеристики вариационного ряда
- •5.8. Показатели размера и интенсивности вариации
- •5.9. Моменты распределения и показатели его формы
- •5.10. Предельно возможные значения показателей вариации и их применение
- •Рекомендуемая литература
- •6 Глава. Группировка
- •6.1. Значение и сущность группировки
- •6.2. Виды группировок
- •6.3. Многомерные группировки
- •Рекомендуемая литература
- •7 Глава. Выборочное наблюдение. Испытание статистических гипотез
- •7.1. Причины применения выборочного наблюдения. Дескриптивная статистика и статистический вывод
- •7.2. Способы отбора, обеспечивающие репрезентативность выборки. Виды выборки
- •7.3. Ошибка выборки
- •7.4. Влияние вида выборки на величину ошибки выборки
- •7.5. Задачи, решаемые при применении выборочного метода
- •7.6. Распространение данных выборочного наблюдения на генеральную совокупность
- •7.7. Малая выборка
- •7.8. Примеры применения выборочного метода
- •Рекомендуемая литература
- •8 Глава. Статистическая проверка гипотез
- •8.1. Общие понятия
- •8.2. Проверка гипотезы о законе распределения
- •8.3. Проверка гипотезы о связи на основе критерия x2 (хи-квадрат)
- •8.4. Проверка гипотезы о средних величинах
- •8.5. Основы дисперсионного анализа
- •8.6. Некоторые непараметрические критерии
- •Рекомендуемая литература
- •9 Глава. Корреляционно-регрессионный анализ и моделирование статистических связей
- •9.1. Понятие о статистической и корреляционной связи
- •9.2. Условия применения и ограничения корреляционно-регрессионного метода
- •9.3. Задачи корреляционно-регрессионного анализа и моделирования
- •3. Задана прогнозирования возможных значений результативного признака при задаваемых значениях факторных признаков.
- •9.4. Вычисление и интерпретация параметров парной линейной регрессии
- •9.5. Статистическая оценка надежности параметров парной регрессии и корреляции
- •9.6. Применение линейного уравнения парной регрессии
- •9.7. Вычисление параметров парной линейной регрессии на основе аналитической группировки
- •9.8. Параболическая корреляция
- •9.9. Гиперболическая корреляция
- •9.10. Множественное уравнение регрессии
- •9.11. Меры тесноты связей в многофакторной системе
- •9.13. Корреляционно-регрессионные модели и их применение в анализе и прогнозе
- •Рекомендуемая литература
- •10 Глава. Системы регрессионных уравнений
- •10.1. Понятие о системах регрессионных уравнений
- •10.2. Проблемы решения систем взаимосвязанных уравнений
- •10.4. Косвенный метод наименьших квадратов
- •10.5. Двойной метод наименьших квадратов
- •Рекомендуемая литература
- •11 Глава. Статистический анализ неколичественных переменных
- •11.1. Зависимость методов измерений связей от уровня измерения переменных
- •11.2. Измерение связи между двумя дихотомическими переменными
- •11.5. Другие меры связей между номинальными переменными
- •11.6. Коэффициенты корреляции рангов
- •Рекомендуемая литература
- •12 Глава. Статистическое изучение динамики
- •12.1. Виды динамических рядов. Сопоставимость данных в изучении динамики
- •12.2. Элементы динамики: основная тенденция и колебания
- •12.3. Показатели, характеризующие тенденцию динамики
- •12.4. Особенности показателей динамики для рядов, состоящих из относительных уровней
- •12.5. Средние показатели тенденции динамики
- •12.6. Методы выявления типа тенденции динамики
- •12.7. Методика измерения параметров тренда
- •12.8. Методика изучения и показатели колеблемости
- •12.9. Измерение устойчивости в динамике
- •12.10. Сезонные колебания и полное разложение дисперсии уровней динамического ряда
- •12.11. Прогнозирование на основе тренда и колеблемости
- •12.12. Корреляция рядов динамики
- •Рекомендуемая литература
- •13 Глава. Индексы
- •13.1. Понятие индекса
- •13.2. Индекс как показатель центральной тенденции (индекс средний из индивидуальных)
- •13.3. Агрегатные индексы. Система индексов
- •13.4. Свойства индексов
- •13.5. Индексный анализ взвешенной средней. Индекс структуры
- •13.6. Построение индексов при обобщении данных по единицам совокупности и по элементам
- •13.7. Границы и условия применения индексного метода
- •13.8. Комплексное использование индексного и регрессионного методов анализа
- •13.9. Примеры использования индексов в экономико-статистических расчетах
- •Рекомендуемая литература
- •14 Глава. Статистическое изучение структуры совокупности и ее изменений
- •14.1. Показатели простой (одномерной) структуры
- •14.2. Показатели иерархической (древовидной) структуры
- •14.3. Показатели балансовой структуры
- •14.4. Показатели многомерной структуры с пересекающимися признаками
- •14.6. Показатели концентрации, специализации, монополизации. Многомерная структура
- •14.7. Абсолютные и относительные показатели изменения структуры
- •14,8. Ранговые показатели изменения структуры
- •Рекомендуемая литература
- •Приложения
- •1. Статистико-математические таблицы
- •2. Основные принципы официальной статистики в регионе Европейской экономической комиссии
7.2. Способы отбора, обеспечивающие репрезентативность выборки. Виды выборки
Для того чтобы по выборке можно было делать вывод о свойствах генеральной совокупности, выборка должна быть репрезентативной (представительной), т.е. полно и адекватно представлять свойства генеральной совокупности. Репрезентативность выборки может быть обеспечена только при объективности отбора данных.
Выборочная совокупность формируется по принципу массовых вероятностных процессов, без каких бы то ни было исключений из принятой схемы отбора. Необходимо обеспечить относительную однородность выборочной совокупности, или ее разделение на однородные группы единиц. При формировании выборочной совокупности должно быть дано четкое определение единицы отбора. Желателен приблизительно одинаковый размер единиц отбора, причем результаты будут тем точнее, чем меньше единица отбора.
218
Возможны три способа отбора: случайный отбор, отбор единиц по определенной схеме, сочетание первого и второго способов.
Если отбор в соответствии с принятым способом проводится из генеральной совокупности, предварительно разделенной на типы (слои или страты), то такая выборка называется типической (или расслоенной, или стратифицированной, или районированной). Еще одно деление выборки по видам определяется тем, что является единицей отбора: единица наблюдения или серия единиц (иногда используют термин «гнездо»). В последнем случае выборка называется серийной или гнездовой. На практике часто используется сочетание типической выборки с отбором сериями. В математической статистике, обсуждая проблему отбора данных, обязательно вводят деление выборки на повторную и бесповторную. Первая соответствует схеме возвратного шара, вторая — безвозвратного (при рассмотрении процесса отбора данных на примере отбора шаров разного цвета из урны). В социально-экономической статистике нет смысла применять повторную выборку, поэтому, как правило, имеется в виду бесповторный отбор. Если выборка проводится по схеме возвратного шара, то вероятность попадания любой единицы в выборку равна 1/N, и она остается той же самой на протяжении всей процедуры отбора. Если выборка проводится по схеме невозвратного шара, то вероятность попадания единицы в выборку изменяется
последней.
Поскольку социально-экономические объекты имеют сложную структуру, организовать выборку бывает довольно трудно. Например, чтобы провести отбор домохозяйств при изучении потребления населения крупного города, легче провести сначала отбор территориальных ячеек, жилых домов, потом квартир или домохозяйств, затем респондента. Такая выборка называется многоступенчатой. На каждой ступени используются разные единицы отбора: более крупные — на начальных ступенях, на последней ступени единица отбора совпадает с единицей наблюдения.
Еще один вид выборочного наблюдения — многофазовая выборка. Такая выборка включает определенное количество
219
фаз, каждая из которых отличается подробностью программы наблюдения. Например, 25% всей генеральной совокупности обследуются по краткой программе, каждая четвертая единица из этой выборки обследуется по более полной программе и т.д.
При любом виде выборки отбор единиц проводится тремя отмеченными способами. Рассмотрим процедуру случайного отбора. Прежде всего составляется список единиц совокупности, в котором каждой единице присваивается цифровой код (номер или метка). Затем проводится жеребьевка. Шары с соответствующими номерами закладываются в барабан, перемешиваются, и проводится их отбор. Выпавшие номера соответствуют единицам, попавшим в выборку; число номеров равно запланированному объему выборки.
Отбор жеребьевкой может быть подвержен смещениям, вызванным недостатками техники (качеством шаров, барабана) и другими причинами. Более надежен с точки зрения объективности отбор по таблице случайных чисел. Такая таблица содержит серии цифр, чередующихся случайным образом, отобранных путем электронных сигналов. Поскольку мы пользуемся десятичной цифровой системой 0, 1,2, ..., 9, вероятность появления любой цифры равна 1/10. Следовательно, если бы нужно было создать таблицу случайных чисел, включающую 500 знаков, то 50 из них были бы нули, столько же — единиц и т.д. Ввиду того, что каждая цифра и их последовательность являются случайными, можно использовать таблицу случайных чисел, перемещаясь либо по ее вертикали, либо по горизонтали. Цифры сгруппированы по пять для лучшей обозримости таблицы и пользования ею (табл. П.7 приложения).
Пример. Предположим, что нам нужно провести 5%-ную выборку из 9540 студентов университета. Объем выборки составит: п = 5% - 7V = 477 студентов.
Ввиду того, что объем генеральной совокупности выражается четырехзначным числом, код каждого студента должен быть четырехзначным: от 0001 — для первого студента до 9540 — для последнего студента в списке. Для того чтобы провести отбор по таблице случайных чисел, нужно выбрать начальную точку: можно закрыть глаза и поставить наугад точку в таблицу карандашом. Предположим, мы попали в 13-ю строку в 1-й столбец (табл. 7.1).
220
Таблица 7. 1 Пример использования таблицы случайных чисел
Следовательно, единица с номером 9082 является первой в выборке. Если двигаться по строке, то единица с номером 2602 будет второй, 8088 — третьей, 9259 — четвертой. Следующий код 9610 пропускаем, так как у нас нет студента с таким номером. Далее в выборку попадают номера 4277, 2605, 6176, 8730, 4117, 7212, 1791, 5296, 5919, 0305, 1018. Код 9797 пропускается. Следующие отобранные номера 7868, 0161, 3747, 9526, 8413, 7725 и т.д.
Процедура продолжается, пока число отобранных номеров не составит требуемый объем выборки (n = 477).
Часто используется отбор по какой-либо схеме (так называемая направленная выборка). Схема отбора принимается такой, чтобы отразить основные свойства и пропорции генеральной совокупности. Простейший способ — по спискам единиц генеральной совокупности, составленным так, чтобы упорядочивание единиц было бы не связано с изучаемыми свойствами, проводится механический отбор единиц с шагом, равным N: n. Обычно отбор начинают не с первой единицы, а отступив полшага, чтобы уменьшить возможность смещения выборки. Частота появления единиц с теми или иными особенностями, например студентов с тем или иным уровнем успеваемости, живущих в общежитии, и т.д., будет определяться той структурой, которая сложилась в генеральной совокупности.
Для большей уверенности в том, что выборка отразит структуру генеральной совокупности, последняя подразделяется на типы, и проводится случайный или механический от-
221
бор из каждого типа. Общее число единиц, отобранных, из разных типов, должно соответствовать объему выборки.
Особые трудности возникают, когда нет списка единиц, а отбор нужно провести либо на местности, либо из образцов продукции на складе готовой продукции. В этих случаях важно детально разработать схему ориентации на местности и схему отбора и следовать ей, не допуская отклонений. Например, счетчик получает указание двигаться от определенной автобусной остановки на север по четной стороне улицы и, отсчитав два дома от первого угла, войти в третий и провести опрос в каждом пятом жилом помещении. Неукоснительное следование принятой схеме обеспечивает выполнение главного условия формирования репрезентативной выборки — объективность отбора единиц.
От случайной выборки следует отличать квотный отбор, когда выборка конструируется из единиц определенных категорий (квот), которые должны быть представлены в заданных пропорциях. Например, при опросе покупателей универмага может быть запланировано провести отбор 150 респондентов, в том числе 90 женщин, из низ 25 — девушек, 20 — молодых женщин с маленькими детьми, 35 — женщин среднего возраста, одетых в деловой костюм, 10 — женщин старшего возраста; кроме того, планировался опрос 60 мужчин, из них 25 — подростков и юношей, 10 — молодых мужчин с детьми, 15 — мужчин, которые одеты в костюмы, 10 — мужчин, одетых в спортивную одежду. Для определения потребительских ориентации и предпочтений такая выборка, может быть, и хороша, но если мы захотим по ней установить среднюю сумму покупок, их структуру, получим непредставительные результаты. Это происходит потому, что квотная выборка нацелена на отбор определенных категорий.
Выборка может быть нерепрезентативной, даже если она формируется в соответствии с известными пропорциями генеральной совокупности, но отбор проводится без какой-либо схемы — единицы набираются, как угодно, лишь бы обеспечить соотношение их категорий в тех же пропорциях, что и в генеральной совокупности (например, соотношение мужчин и женщин, респондентов в возрасте моложе и старше трудоспособного, в трудоспособном и т.д.).
222
Эти замечания должны предостеречь вас от подобных подходов к формированию выборки и еще раз показать необходимость объективного отбора.