
- •Общая теория статистики
- •Глава 1. Понятие о статистике................. 13
- •Глава 2. Организация статистики. Статистическое наблюдение ...... 32
- •Глава 3. Статистические показатели ............. 82
- •Глава 4. Представление статистических данных: таблицы и графики. 100
- •Глава 5. Средние величины и изучение вариации. ... 120
- •Глава 6. Группировка........................ 172
- •Глава 7. Выборочное наблюдение. Испытание статистических гипотез .. 214
- •Глава 8. Статистическая проверка гипотез........ 270
- •Глава 9. Корреляционно-регрессионный анализ и моделирование статистических связей . . . 320
- •Глава 10. Системы регрессионных уравнений....... 392
- •Глава 11. Статистический анализ неколичественных переменных . 411
- •Глава 12. Статистическое изучение динамики....... 445
- •Глава 13. Индексы ........................... 526
- •Глава 14. Статистическое изучение структуры совокупности и ее изменений ... 597
- •Предисловие
- •Глава 1. Понятие о статистике
- •1.1. Что такое статистика
- •1.2. Статистическая закономерность. Статистические совокупности
- •1.3. Признаки и их классификация
- •1.4. Определение предмета статистики — основа статистической методологии
- •Рекомендуемая литература
- •2 Глава. Организация статистики. Статистическое наблюдение
- •2.1. Организация государственной статистики в Российской Федерации
- •2.2. Важнейшие международные организации и их статистические службы
- •2.3. Требования, предъявляемые к собираемым данным. Формы организации и виды статистического наблюдения
- •2.4. Подготовка статистического наблюдения
- •2.5. Статистическая отчетность
- •2.6. Ошибки статистического наблюдения. Методы контроля данных наблюдения
- •2.7. Реформирование российской государственной Статистики
- •Рекомендуемая литература
- •3. Глава. Статистические показатели
- •3.1. Сущность и значение статистических показателей.
- •3.2. Классификация статистических показателей
- •3.3. Общие принципы построения относительных статистических показателей
- •3.4. Понятие о системах статистических показателей
- •3.5. Функции статистических показателей
- •Рекомендуемая литература
- •4 Глава. Представление статистических данных: таблицы и графики
- •4.1. Статистические таблицы
- •4.2. Основные виды графиков
- •4.3. Картограммы и картодиаграммы
- •Рекомендуемая литература
- •5 Глава. Средние величины и изучение вариации
- •5.1. Однородность и вариация массовых явлений
- •5.2. Средняя арифметическая величина
- •5.3. Другие формы средних величин
- •5.4. Средняя величина как выражение закономерности
- •5.5. Вариация массовых явлений
- •5.6. Построение вариационного ряда. Виды рядов. Ранжирование данных
- •5.7. Структурные характеристики вариационного ряда
- •5.8. Показатели размера и интенсивности вариации
- •5.9. Моменты распределения и показатели его формы
- •5.10. Предельно возможные значения показателей вариации и их применение
- •Рекомендуемая литература
- •6 Глава. Группировка
- •6.1. Значение и сущность группировки
- •6.2. Виды группировок
- •6.3. Многомерные группировки
- •Рекомендуемая литература
- •7 Глава. Выборочное наблюдение. Испытание статистических гипотез
- •7.1. Причины применения выборочного наблюдения. Дескриптивная статистика и статистический вывод
- •7.2. Способы отбора, обеспечивающие репрезентативность выборки. Виды выборки
- •7.3. Ошибка выборки
- •7.4. Влияние вида выборки на величину ошибки выборки
- •7.5. Задачи, решаемые при применении выборочного метода
- •7.6. Распространение данных выборочного наблюдения на генеральную совокупность
- •7.7. Малая выборка
- •7.8. Примеры применения выборочного метода
- •Рекомендуемая литература
- •8 Глава. Статистическая проверка гипотез
- •8.1. Общие понятия
- •8.2. Проверка гипотезы о законе распределения
- •8.3. Проверка гипотезы о связи на основе критерия x2 (хи-квадрат)
- •8.4. Проверка гипотезы о средних величинах
- •8.5. Основы дисперсионного анализа
- •8.6. Некоторые непараметрические критерии
- •Рекомендуемая литература
- •9 Глава. Корреляционно-регрессионный анализ и моделирование статистических связей
- •9.1. Понятие о статистической и корреляционной связи
- •9.2. Условия применения и ограничения корреляционно-регрессионного метода
- •9.3. Задачи корреляционно-регрессионного анализа и моделирования
- •3. Задана прогнозирования возможных значений результативного признака при задаваемых значениях факторных признаков.
- •9.4. Вычисление и интерпретация параметров парной линейной регрессии
- •9.5. Статистическая оценка надежности параметров парной регрессии и корреляции
- •9.6. Применение линейного уравнения парной регрессии
- •9.7. Вычисление параметров парной линейной регрессии на основе аналитической группировки
- •9.8. Параболическая корреляция
- •9.9. Гиперболическая корреляция
- •9.10. Множественное уравнение регрессии
- •9.11. Меры тесноты связей в многофакторной системе
- •9.13. Корреляционно-регрессионные модели и их применение в анализе и прогнозе
- •Рекомендуемая литература
- •10 Глава. Системы регрессионных уравнений
- •10.1. Понятие о системах регрессионных уравнений
- •10.2. Проблемы решения систем взаимосвязанных уравнений
- •10.4. Косвенный метод наименьших квадратов
- •10.5. Двойной метод наименьших квадратов
- •Рекомендуемая литература
- •11 Глава. Статистический анализ неколичественных переменных
- •11.1. Зависимость методов измерений связей от уровня измерения переменных
- •11.2. Измерение связи между двумя дихотомическими переменными
- •11.5. Другие меры связей между номинальными переменными
- •11.6. Коэффициенты корреляции рангов
- •Рекомендуемая литература
- •12 Глава. Статистическое изучение динамики
- •12.1. Виды динамических рядов. Сопоставимость данных в изучении динамики
- •12.2. Элементы динамики: основная тенденция и колебания
- •12.3. Показатели, характеризующие тенденцию динамики
- •12.4. Особенности показателей динамики для рядов, состоящих из относительных уровней
- •12.5. Средние показатели тенденции динамики
- •12.6. Методы выявления типа тенденции динамики
- •12.7. Методика измерения параметров тренда
- •12.8. Методика изучения и показатели колеблемости
- •12.9. Измерение устойчивости в динамике
- •12.10. Сезонные колебания и полное разложение дисперсии уровней динамического ряда
- •12.11. Прогнозирование на основе тренда и колеблемости
- •12.12. Корреляция рядов динамики
- •Рекомендуемая литература
- •13 Глава. Индексы
- •13.1. Понятие индекса
- •13.2. Индекс как показатель центральной тенденции (индекс средний из индивидуальных)
- •13.3. Агрегатные индексы. Система индексов
- •13.4. Свойства индексов
- •13.5. Индексный анализ взвешенной средней. Индекс структуры
- •13.6. Построение индексов при обобщении данных по единицам совокупности и по элементам
- •13.7. Границы и условия применения индексного метода
- •13.8. Комплексное использование индексного и регрессионного методов анализа
- •13.9. Примеры использования индексов в экономико-статистических расчетах
- •Рекомендуемая литература
- •14 Глава. Статистическое изучение структуры совокупности и ее изменений
- •14.1. Показатели простой (одномерной) структуры
- •14.2. Показатели иерархической (древовидной) структуры
- •14.3. Показатели балансовой структуры
- •14.4. Показатели многомерной структуры с пересекающимися признаками
- •14.6. Показатели концентрации, специализации, монополизации. Многомерная структура
- •14.7. Абсолютные и относительные показатели изменения структуры
- •14,8. Ранговые показатели изменения структуры
- •Рекомендуемая литература
- •Приложения
- •1. Статистико-математические таблицы
- •2. Основные принципы официальной статистики в регионе Европейской экономической комиссии
5.7. Структурные характеристики вариационного ряда
Медиана распределения
При изучении вариации применяются такие характеристики вариационного ряда, которые описывают количественно его структуру, строение. Такова, например, медиана — величина варьирующего признака, делящая совокупность на две равные части — со значениями признака меньше медианы и со значениями признака больше медианы (третьего банка из пяти в начале подразд. 5.6, т.е. 268 млн руб.).
На примере этих данных видно принципиальное различие между медианой и средней величиной. Медиана не зависит от значений признака на краях ранжированного ряда. Если бы капитал крупнейшего банка Санкт-Петербурга был в десять раз больше, величина медианы не изменилась бы. Поэтому часто медиану используют как более надежный показатель типичного значения признака, нежели арифметическая средняя, если ряд значений неоднороден, включает резкие отклонения от средней. В данном ряду средняя величина собственного капитала равна 394 млн руб., сложилась под влиянием наибольшей варианты. 80% банков имеют капитал меньше среднего и лишь 20% — больше. Вряд ли такую среднюю можно считать типичной величиной. При четном числе единиц совокупности за медиану принимают арифметическую среднюю величину из двух центральных вариант, например при 10 значениях признака — среднюю из пятого и шестого значений в ранжированном ряду.
150
В интервальном вариационном ряду для нахождения медианы применяется формула
В
равноинтервальном ряду медиана — это
середина среднего интервала при их
нечетном числе или средняя арифметическая
из границ двух средних интервалов при
их четном числе.
В дискретном вариационном ряду медианой следует считать значение признака в той группе, в которой накопленная частота превышает половину численности совокупности. Например, для данных табл. 5.1 медианой числа забитых за игру мячей будет два.
Квартили распределения
Аналогично медиане вычисляются значения признака, делящие совокупность на четыре равные по числу единиц части. Эти величины называются квартилями и обозначаются за-
151
Значения
признака, делящие ряд на пять равных
частей, называют квинтилями, на десять
частей — децилями, на сто частей —
перцентилями. Поскольку эти характеристики
применяются лишь при необходимости
подробного изучения структуры
вариационного ряда, приводить их формулы
и расчет не будем.
Мода распределения
Бесспорно, важное значение имеет такая величина признака, которая встречается в изучаемом ряду, в совокупности чаще всего. Такую величину принято называть модой и обозначать Мо. В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой. Например, по данным табл. 5.1 чаще всего за футбольный матч было забито два мяча — 53 раза. Модой является число два. Обычно встречаются ряды с одним модальным значением признака. Если два или несколько равных (и даже несколько различных, но больших, чем соседние) значений признака имеются в вариационном ряду, он считается соответственно бимодальным («иерблюдообразным») либо мультимодальным. Это говорит
152
о неоднородности совокупности, возможно, представляющей собой агрегат нескольких совокупностей с разными модами.
Так и в толпе туристов, приехавших из разных стран, вместо одной, преобладающей среди местных жителей модной одежды можно встретить смесь «мод», принятых у разных народов мира.
В интервальном вариационном ряду, тем более при непрерывной вариации признака, строго говоря, каждое значение признака встречается только один раз. Модальным интервалом является интервал с наибольшей частотой. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения, т.е. число единиц совокупности, приходящееся на единицу измерения варьирующего признака, достигает максимума. Это условное значение и считается точечной модой. Логично предположить, что такая точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда имеем обычно применяемую формулу
Вычисление
моды в интервальном ряду весьма условно.
Приближенно Мо может быть определена
графически (см. рис. 5.1).
В равноинтервальном ряду при расчете моды (5.5) следует использовать плотность распределения.
К изучению структуры вариационного ряда средняя арифметическая величина тоже имеет отношение, хотя основное значение этого обобщающего показателя другое. В ряду распределения хозяйств по урожайности (табл. 5.6) средняя ве-
153
личина урожайности вычисляется как взвешенная по частоте середина интервалов х' (по формуле (5.2)):
Соотношение между средней величиной, медианой и модой
Различие между средней арифметической величиной, медианой и модой в данном распределении невелико. Если распределение по форме близко к нормальному закону, то медиана находится между модой и средней величиной, причем ближе к средней, чем к моде.
При правосторонней асимметрии х > Me > Mo;
при левосторонней асимметрии х < Me < Mo.
Для умеренно асимметричных распределений справедливо равенство: |Мо — х\ = 3|Ме — х\.