
- •1 Нормативні дані з дисципліни
- •2. Мета і завдання дисципліни
- •3 Перелік забезпечуючих дисциплін
- •4 Структура залікових кредитів
- •5 Навчально–методичне забезпечення дисципліни
- •5.1 Література
- •5.2 Методичні посібники та вказівки
- •Лекція 1 Система передачі інформації. Основні поняття і визначення
- •1. Місце інформаційних систем у сучасному світі
- •2. Класифікація систем передачі інформації
- •3. Узагальнена структурна схема системи передачі інформації
- •4.Основні інформаційно-технічні характеристики спи
- •4.1 Вірогідність передачі інформації
- •Завадостійкість передачі інформації
- •Швидкість передачі інформації
- •Пропускна здатність каналів зв'язку
- •Висновки
- •Тестові запитання
- •1.Кількість інформації в повідомленні
- •Логарифмічна міра добре відображає адитивність інформації.
- •2 .Джерело дискретних повідомлень і його ентропія
- •Ентропію джерела не рівноімовірних попарно залежних повідомлень, позначимо , дамо розрахункову формулу
- •3.Джерело неперервних повідомлень
- •Висновки
- •Тестові запитання
- •Практичне заняття №1
- •Задачі для самостійного розв’язання
- •Лекція 3 Передача інформації з дискретними і неперервними каналами зв'язку
- •1.Продуктивність джерела дискретних повідомлень
- •2.Швидкість передачі інформації з дискретних каналів без перешкод. Оптимальне статистичне кодування
- •3.Швидкість передачі інформації й пропускна здатність дискретних каналів з завадами
- •4.Пропускна здатність двійкового симетричного каналу зв'язку з завадами
- •5.Швидкість передачі інформації неперервними каналами з завадами.
- •6. Пропускна здатність неперервного каналу з нормальним білим шумом
- •Пропускна здатність неперервного каналу зв'язку при довільних спектрах сигналів і завад.
- •Висновки
- •Тестові запитання
- •Практичне заняття №2
- •Задачі для самостійного розв’язання
- •Лекція 4 завадостійке кодування. Основні положення теорії завадостійкого кодування
- •1.Постановка задачі застосування завадостійких кодів
- •2.Класифікація завадостійких кодів
- •3. Основні числові характеристики завадостійких кодів
- •4.Кодова відстань і її зв'язок із кратністю помилок що виявляються й або, що виправляються.
- •Висновки
- •Лекція 5 Систематичні блокові лінійні коди
- •Загальні методи кодування і декодування систематичних блокових лінійних кодів
- •Код з парним числом одиниць
- •Інверсний код
- •Код з подвоєнням елементів
- •Коди Хемінга
- •Висновки
- •Лабораторна робота №1 вивчення принципу дії та дослідження завадостійкості радіосистеми передавання інформації із блоковим кодом
- •1 Мета роботи
- •2 Методичні вказівки
- •Позиції, що займають одиниці в одиничній матриці, вказують номера позицій контрольних символів, що використовуються у кожній перевірці на парність.
- •3 Опис лабораторної установки
- •4 Порядок виконання роботи
- •6 Контрольні запитання і завдання
- •Лекція 6 циклічні коди
- •Основні властивості циклічного коду й способи побудови
- •Способи кодування і декодування циклічних кодів
- •Матричне подання циклічних кодів
- •Висновки
- •Тестові запитання
- •Лабораторна робота №2 Вивчення властивостей і принципів побудови циклічних кодів.
- •1 Ціль роботи
- •2 Методичні вказівки
- •3 Порядок виконання роботи
- •5 Контрольні запитання.
- •Практичне заняття №3
- •Розв’язання. Визначимо кількість інформаційних і контрольних символів у кодовій комбінації:
- •Задачі для самостійного розв’язання
- •Лекція 7 Оптимальний когерентний прийом дискретних сигналів
- •1.Основні положення теорії оптимального приймання сигналів
- •Синтез, правила розрізнення сигналів у випадку приймання повністю відомих сигналів на фоні нормального білого шуму
- •Структурні схеми оптимальних приймачів
- •Обчислення завадостійкості (імовірності помилок розрізнення сигналів) оптимальних когерентних приймачів
- •Виходячи з цього, можна записати формули для обчислення імовірностей помилок в системах когерентного приймання фазовою, частотною та амплітудною маніпуляцією.
- •Висновки
- •3 Порядок виконання роботи
- •5 Контрольні запитання
- •Лекція 8 оптимальний некогерентний прийом дискретних сигналів і його завадостійкість
- •Модель лінії зі змінними параметрами
- •Алгоритм прийняття рішення при прийманні сигналів з випадковою початковою фазою
- •Приймання сигналів з випадковою початковою фазою і флуктуючою амплітудою
- •Некогерентні приймачі сигналів з використанням обробки за огинаючою
- •Некогерентний приймач ортогональних сигналів
- •Приймання сигналів з випадковою початковою фазою при використанні відносної фозової маніпуляції
- •Висновки
- •Тестові запитання
- •3 Порядок виконання роботи.
- •4 Структура звіту
- •5 Контрольні запитання і завдання
- •Практичне заняття № 4 "Когерентне и не когерентне приймання дискретних сигналів та його завадостійкість"
- •Приклади розв’язання основних типів задач
- •Задачі для самостійного розв’язання
- •Лекція 9 оптимальний і квазиоптимальНіЙ прийом неПерервних сигналів і його завадостійкість
- •1.Особливості приймання неперервних сигналів з аналоговою модуляцією
- •2. Завадостійкість прийому сигналів з амплітудною модуляцією
- •3.Завадостійкість прийому сигналів з фазовою модуляцією
- •4.Завадостійкість прийому сигналів з частотною модуляцією
- •Висновки
- •Лекція 10 цифрові методи передачі неЗперервних повідомлень
- •Імпульсно – кодова модуляція
- •2.Завадостійкисть систем зв’язку з імпульсно-кодовою модуляцією
- •3.Диференціальна імпульсно-кодова модуляція. Дельта модуляція
- •Висновки
- •Тестові запитання
- •Практичне заняття № 5
- •Приклади розв’язання основних типів задач
- •Задачі для самостійного розв’язання
- •Лекція 11 багатоканальні системи передачі інформації
- •1.Узагальнена структура багатоканальної системи зв’язку
- •2.Системи зв’язку із частотним поділом каналів
- •3Системи зв’язку із часовим поділом каналів
- •Висновки
- •Тестові запитання
- •Лекція 12
- •1. Поняття про багатостанційний доступ
- •Системи з часовим поділом каналів
- •Системи із частотним поділом каналів
- •Системи з кодовим поділом каналів
- •Асинхронно-адресні системи передачі інформації (аас)
- •Висновки
Системи з часовим поділом каналів
У системах
багатостанційного доступу з часовим
поділом (БДЧаП) кожний кореспондент
передає (або приймає) інформацію протягом
спеціально для нього відведених
інтервалів часу. Метод БДЧаП широко
розповсюджений у супутникових системах
зв'язку, які представляють собою мережі
з радіальним об'єднанням кореспондентів.
Ретранслятор на супутнику по черзі
надається для передачі сигналів кожної
земної станції системи БСД. Щоб виключити
накладення сигналів різних станцій
один на одного через помилки часової
синхронізації, між ними передбачаються
захисні
тимчасові інтервали. Принцип формування
групового сигналу на вході ретранслятора
РТР при роботі передавачів трьох земних
станцій ЗС пояснюється мал.2, де
— час, протягом якого кожна
ЗС випромінює свої сигнали,
— період проходження цих сигналів,
— захисний інтервал,
— тривалість сигналу, що забезпечує
синхронізацію в системі МДЧаП.
Малюнок 2 - Діаграми формування групового сигналу в системі МДЧап
Малюнок 3 - Діаграма, що пояснює програмний метод синхронізації при МДЧаП
Системи із частотним поділом каналів
У системах багатостанційного доступу із частотним поділом (БДЧП) сигналу кожного кореспондента надається окрема смуга частот. Число цих смуг визначається шириною загальної смуги частот, виділеної системі БДЧП. При такому методі всі сигнали кореспондентів мають однакову форму й можуть передаватися одночасно й неперервно. Значення несучих частот передавачів станцій у системі вибирають так, щоб між спектрами окремих сигналів залишалися захисні інтервали для зменшення міжстанційних завад.
Для організації зв'язку в системі БДЧП може використовуватися так званий метод приймальної хвилі. Це означає, що кожному приймачу надається певна несуча частота (хвиля). Передавачі перестроюються по всьому діапазону залежно від номера частоти кореспондента, з яким вони хочуть зв'язатися.
Основними достоїнствами систем БДЧП є: простота реалізації й можливість сумісності з існуючими РСПІ, а також відсутність необхідності синхронізації роботи станцій, що входять у систему.
Системи з кодовим поділом каналів
У системах з кодовим поділом сигнал кожного кореспондента кодується таким чином, щоб сигнали були ортогональними. Кодове ущільнення дозволяє створювати як синхронні, так і асинхронні системи БСД. Достоїнством синхронних систем є можливість досягнення повної ортогональності адресних сигналів. В асинхронних системах не потрібно синхронізації за часом між сигналами кореспондентів. Однак при асинхронній роботі передавачів у кожному приймачі при поділі сигналів виникають міжстанційні завади, що є основним недоліком даних систем. Цей недолік не знижує того інтересу, що проявляється до подібних до систем у зв'язку з можливістю незалежної друг від друга в часі роботи кореспондентів. Оскільки форма кожного сигналу є адресою кореспондента, якому призначена закладена в цьому сигналі інформація, такі системи називають асинхронно-адресними.
Асинхронно-адресні системи передачі інформації (аас)
В ААС для поділу сигналів кореспондентів можна використовувати часовоінтервальні й частотно-тимчасові коди. У першому випадки коди різних адрес відрізняються друг від друга інтервалами між імпульсами. У другому додатковими ознаками кодоутворення є частота заповнення імпульсів.
Однак у цей час в ААС для поділу сигналів кореспондентів, що входять у систему, використовуються складні фазоманіпульовані сигнали, алгоритми формування яких легко реалізуються сучасною цифровою технікою.
Сигнали
в ААС цього типу складаються з елементарних
імпульсів, що мають однакову несучу
частоту й відрізняються за будь-яким
параметром, наприклад по фазі. Фаза
змінюється за законом деякого коду, що
модулює (мал. 4.а), причому найпоширенішою
є двофазна маніпуляція зі зсувом фази
на 180° (мал. 4.б). Якщо визначити смугу
сигналу на мал. 4.а відомим співвідношенням
,
то при тривалості сигналу
його база
де N
—
число символів у модулюючій кодовій
послідовності.
Системою
сигналів
називається множина сигналів, обєднаних
єдиним правилом побудови (алгоритмом).
Можлива кількість адресних сигналів
представляється як обсяг системи
сигналів. Прийнято порівнювати обсяг
системи складних сигналів з базою В.
Розрізняють малі системи сигналів з
,
нормальні (ортогональні або
квазиортогональні) з
і більші с
.
Більшість відомих систем сигналів є
малими або нормальними.
Сигнали, що входять у систему, повинні забезпечувати мінімально можливий рівень взаємних завад, які для систем складних фазоманіпульованих сигналів залежить від виду модуляції кодової послідовності. Серед безлічі кодових послідовностей особливий інтерес для застосування в ААС розглянутого типу представляють лінійні рекуррентні послідовності максимальної довжини, або скорочено М-послідовності,сформовані за допомогою досить простих генераторів на основі регістрів зсуву з лінійними зворотними зв'язками. Вони мають ряд важливих властивостей, які дозволяють формувати на їхній основі квазиортогональні системи сигналів,що характеризуються досить слабкими взаємними завадоми.
Малюнок 4 - Структура сигналів в ААС зі складними ФМ сигналами
У
передавачі ААС зі складними
фазоманіпульованими (ФМ) сигналами,
призначеної для передачі дискретних
повідомлень (мал. 5.а), від джерела
інформації (Д) послідовність символів
1 і 0 зі швидкістю
(мал. 6.а) надходить на вхід кодера-модулятора.
На
другий вхід кодера подається
кодовий сигнал
(мал. 6.б) від генератора коду (ГК). Цей
сигнал має тривалість
і кількість імпульсів N.
Роботою ГК і Д керує синхронізатор (С),
що формує необхідні сигнали керування
й тактові частоти. Модульована кодова
послідовність (мал. 6.в) маніпулює по
фазі в модуляторі (Мод) коливання несучої
частоти. У приймачі (мал. 5.б) сигнал
переноситься на проміжну частоту,
підсилюється в підсилювачі проміжної
частоти (ППЧ) і обробляється узгодженим
фільтром (УФ). Сигнал з виходу УФ надходить
на синхронізатор (С) і вирішальний
пристрій (ВП). Синхронізатор здійснює
пошук ФМ сигналу за часом і управляє
режимом роботи вирішального пристрою.
Після входження в синхронізм на виході
ВП з'являється інформаційна послідовність
у вигляді двійкових символів, що видається
одержувачеві інформації (О).
Малюнок 5 - Структурні схеми передавача (а) і приймача (б) ААС зі складними ФМ сигналами
Малюнок 6 - Принцип передачі двійкової інформації в ААС зі складними ФМ сигналами