
- •1. Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц.
- •Виды матриц:
- •Операции над матрицами
- •Свойства операций сложения и умножения матриц
- •Возведение в степень.
- •Транспонирование матриц.
- •Свойства операции транспонирования.
- •2. Определители 2, 3 и n-го порядков (определения и их свойства). Теорема Лапласа о разложении определителя по элементам строки или столбца. Определители и их свойства
- •Свойства определителей
- •3. Квадратная матрица и ее определитель. Особенная и неособенная квадратные матрицы. Присоединенная матрица. Матрица, обратная данной, и алгоритм ее вычисления. Обратная матрица
- •Алгоритм вычисления обратной матрицы.
- •Запишем систему в матричной форме:
- •Пример. Решить систему уравнений по формулам Крамера
- •5. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.
- •Пример. Методом Гаусса решить систему:
- •Метод обратной матрицы.
- •7. Теорема и формулы Крамера решения системы п линейных уравнений с п переменными (без вывода).
- •Решение системы линейных уравнений с неизвестными
- •8. Понятие функции, способы задания функций. Область определения. Четные и нечетные, ограниченные, монотонные функции. Примеры. Понятие функции одной переменной
- •Способы задания функций:
- •Основные свойства функций
- •9. Понятие элементарной функции. Основные элементарные функции и их графики (постоянная, степенная, показательная, логарифмическая). Элементарная функция
- •Основные элементарные функции
- •10. Уравнение линии на плоскости. Точка пересечения двух линий. Основные виды уравнений прямой на плоскости (одно из них вывести). Уравнение линии на плоскости
- •Взаимное расположение двух линий
- •Уравнение прямой на плоскости
- •Уравнение прямой, проходящей через заданную точку в данном направлении
- •Уравнение пучка прямых Уравнение прямой в отрезках
- •Общее уравнение прямой и его исследование
- •Точка пересечения прямых
- •11. Общее уравнение прямой на плоскости, его исследование. Условия параллельности и перпендикулярности прямых. Общее уравнение прямой и его исследование
- •Условия параллельности и перпендикулярности двух прямых:
- •12. Предел последовательности при и предел функции при . Признаки существования предела (с доказательством теоремы о пределе промежуточной функции). Предел числовой последовательности
- •Предел функции в бесконечности и в точке
- •Признаки существования предела
- •13. Определение предела функции в точке. Основные теоремы о пределах (одну из них доказать). Предел функции в точке
- •Основные теоремы о пределах. Признаки существования предела
- •Предел алгебраической суммы конечного числа функций равен такой же сумме пределов этих функций, т.Е.
- •Предел произведения конечного числа функций равен произведению пределов этих функций, т.Е.
- •Предел частного двух функций равен частному пределов этих функций (при условии, что предел делителя не равен нулю), т.Е.
- •Бесконечно большие величины
- •Свойства бесконечно больших величин
- •Связь между бесконечно малыми и бесконечно большими величинами
- •15. Второй замечательный предел, число е. Понятие о натуральных логарифмах. Второй замечательный предел.
- •16. Непрерывность функции в точке и на промежутке. Свойства функций, непрерывных на отрезке. Точки разрыва. Примеры. Непрерывность функции
- •Свойства функций, непрерывных в точке
- •1. Если функции и непрерывны в точке , то их сумма , произведение и частное (при условии ) являются функциями, непрерывными в точке .
- •2. Если функция непрерывна в точке и , то существует такая окрестность точки , в которой .
- •Точки разрыва функции
- •Свойства функций, непрерывных на отрезке
- •17. Производная и ее геометрический смысл. Уравнение касательной к плоской кривой в заданной точке. Определение производной
- •Задача о касательной
- •18. Дифференцируемость функций одной переменной. Связь между дифференцируемостью и непрерывностью функции (доказать теорему). Понятие дифференцируемости функции
- •Связь между дифференцируемостью функции и ее непрерывностью
- •19. Основные правила дифференцирования функций одной переменной (одно из этих правил доказать).
- •Основные правила дифференцирования
- •Производная алгебраической суммы конечного числа дифференцируемых функций равна алгебраической сумме производных этих функций, т.Е.
- •5. Производная частного двух дифференцируемых функций может быть найдена по формуле
- •20. Формулы производных основных элементарных функций (одну из формул вывести). Производная сложной функции. Производные основных элементарных функций (таблица производных)
- •Производная сложной функции
- •21. Теоремы Ролля и Лагранжа (без доказательства). Геометрическая интерпретация этих теорем.
- •22. Достаточные признаки монотонности функции (один из них доказать). Признаки возрастания и убывания функции.
- •23. Определение экстремума функции одной переменной. Необходимый признак экстремума (доказать).
- •24. Достаточные признаки существования экстремума (доказать одну из теорем).
- •25. Понятие асимптоты графика функции. Горизонтальные, наклонные и вертикальные асимтоты. Примеры.
- •26. Общая схема исследования функций и построения их графиков. Пример.
- •27. Функции нескольких переменных. Примеры. Частные производные (определение). Экстремум функции нескольких переменных и его необходимые условия. Основные понятия. Частные производные
- •Частные производные функции двух переменных
- •Экстремум функции двух переменных
- •Инвариантность формы дифференциала
- •Приближенные вычисления с помощью дифференциала
- •30. Понятие первообразной функции. Неопределенный интеграл и его свойства (одно из свойств доказать). Понятие первообразной и неопределенный интеграл
- •Свойства неопределенного интеграла
- •31. Метод замены переменной в неопределенном интеграле и особенности применения этого метода при вычислении определенного интеграла.
- •32. Метод интегрирования по частям для случаев неопределенного и определенного интегралов (вывести формулу). Примеры.
- •Методы вычисления определенного интеграла
- •33. Определенный интеграл как предел интегральной суммы. Свойства определенного интеграла.
- •Геометрический смысл определенного интеграла.
- •Экономический смысл определенного интеграла.
- •Свойства определенного интеграла
- •34. Теорема о производной определенного интеграла по переменному верхнему пределу. Формула Ньютона—Лейбница. Определенный интеграл с переменным верхним пределом
- •Формула Ньютона-Лейбница.
- •35. Несобственные интегралы с бесконечными пределами интегрирования. Интеграл Пуассона (без доказательства). Несобственные интегралы с бесконечными пределами интегрирования
- •36. Вычисление площадей плоских фигур с помощью определенного интеграла. Примеры.
31. Метод замены переменной в неопределенном интеграле и особенности применения этого метода при вычислении определенного интеграла.
Метод замены переменной (метод подстановки).
Одним из основных методов интегрирования является метод замены переменной (или метод подстановки), описываемый формулой:
(1)
Пусть
заданный интеграл
не может быть непосредственно преобразован
к табличному интегралу. Введем новую
переменную
:
.
Тогда
,
,
т.е.
.
□ Найдем
производные по переменной
от левой и правой части;
,
.
Т.к.
,
то эти производные равны, поэтому по
следствию Лагранжа левая и правая части
(1)
отличаются на некоторую постоянную.
Поскольку сами неопределенные интегралы
определены с точностью до неопределенного
постоянного слагаемого, то указанную
постоянную в окончательной записи можно
опустить.■
Формула показывает, что переходя к новой переменной, достаточно выполнить замену переменной в подынтегральном выражении. Удачная замена переменной позволяет упростить исходный интеграл, свести его к табличному.
Пример.
Найти
.
Решение.
.
Замечание. Новую переменную можно не выписывать явно, а производить преобразования функции под знаком дифференциала (путем введения постоянных и переменных под знак дифференциала).
Теорема.
Пусть
некоторая первообразная для функции
.
Тогда если вместо аргумента
подынтегральной функции
и первообразной
подставить выражение
,
то это приведет к появлению дополнительного
множителя
перед первообразной:
,
где
и
- некоторые числа,
.
□
Перепишем
в виде:
.
Но
.
Вынося постоянный множитель
за знак интеграла и деля левую и правую
части равенства на
,
приходим к
.■
Алгоритм вычисления:
Делаем замену.
Дифференцируем замену
.
Под знаком интеграла переходим к новой переменной.
Находим табличный интеграл.
Возвращаемся к старой переменной.
32. Метод интегрирования по частям для случаев неопределенного и определенного интегралов (вывести формулу). Примеры.
Интегрирование - действие, обратное дифференцированию, то каждому правилу дифференцирования должно соответствовать некоторое правило интегрирования.
Пусть
и
- дифференцируемые функции от
х.
Имеем:
,
откуда
.
Интегрируя
обе части последнего равенства, получим:
,
или
.
Это и есть формула интегрирования по частям.
Интегрирование
по частям состоит в том, что подынтегральное
выражение
представляется каким-либо образом в
виде произведения двух множителей
и
(последний обязательно содержит
)
и согласно формуле данное интегрирование
заменяется двумя:
1) при отыскании из выражения для ;
2)
при отыскании интеграла от
.
Может оказаться, что эти два интегрирования легко осуществляются, тогда как заданный интеграл непосредственно найти трудно.
Правило интегрирования по частям нередко позволяет довести интегрирование до конца.
Пример.
Найти
.
Решение.
Пример.
Найти
.
Решение.
.
Некоторые типы интегралов, берущиеся посредством формулы интегрирования по частям:
-
, где
- многочлен