
- •Затверджено
- •Contents Contents
- •The purpose and the contents of laboratory works
- •Laboratory work №1 Solution of Nonlinear Equations by the Bisection method and Chord method
- •1.1 Purpose of the work
- •1.2 Tasks for laboratory work
- •1.3 The basic theoretical knowledge
- •1.3.1 Bisection method
- •Figure 1.1 – Bisection method
- •Chord method
- •Figure 1.4 – Chord method
- •1.3.3 Matlab function fzero and roots
- •1.4 Individual tasks
- •1.5 Control questions
- •Laboratory work №2 Solution of Nonlinear Equations by the newton method and simple iteratIvE method
- •Figure 2.1 – Newton method
- •Figire 2.2 - Dependence of the number of iterations on the accuracy of methods for the bisection (upper line) and the Newton method (bottom line)
- •2.3.2 The method of simple iteration
- •A sufficient condition for the convergence of the iterative process
- •Individual tasks
- •Laboratory work №3 Solution system of Linear Algebraic Equations
- •3.3.1 Direct methods
- •Inverse matrix:
- •3.3.2 Iterative methods
- •Condition number of a
- •3.4 Individual tasks
- •3.5 Control questions
- •Laboratory work №4
- •Visualization of 3d data in matlab
- •Plot3(X, y, z, 'style')
- •4.3.2 Instructions: meshgrid, plot3, meshc, surfc
- •4.3.3 Instructions: sphere, plot3, mesh
- •4.3.4 The simple animation in 3d
- •1. Working with a sphere
- •4.3.5 Summary of 3d Graphics
- •Individual tasks
- •Laboratory work №5 Solving systems of nonlinear equations
- •5.1 Purpose of the work
- •5.2 Tasks for laboratory work
- •5.3 The basic theoretical knowledge
- •5.3.1 Newton method to solve systems of non-linear equations
- •5.3.2 Matlab function for Newton method for a system of nonlinear equations
- •5.3.3 The matlab routine function fsolve
- •Input Arguments
- •Individual tasks
- •5.5 Control questions
- •List of the literature
- •Appendix a.
- •Individual tasks to Lab number 1, 2
- •Appendex b. The task for self-examination to Lab number 1, 2
Individual tasks
Find the solution system of nonlinear equations by Newton's method.
Hold hand by a system of nonlinear equations by Newton's method.
Along with the "manual" solution provide solutions obtained by standard means of MatLab (functions fsolve).
Table 5.1 – Variants of the tasks
№ |
The system of two equations and two unknowns |
№ |
tTe system of two equations and two unknowns |
1 |
sin(x+1)-y=1.2 2x+cos(x)=2 |
13 |
x2+ y2=5 y= e-xy |
2 |
tg(xy+0.4)= x2 0.6 x2 +2 y2=1 |
14 |
sin(x-0.6)-y=1.6 3x-cos(y)=0.9 |
3 |
cos(x-1)+y=0.5 x-cos(x)=3 |
15 |
x2+ y2=6 y= e-x |
4 |
sin(x)+2y=2 cos(y-1)+x=0.7 |
16 |
x3+ y3=6 y= e-x |
5 |
cos(x-1)+y=1 sin(y)+2x=1.6 |
17 |
x4+ y4=5 y= e-x |
6 |
sin(x+1)-y=1 2x+cоs(y)=2 |
18 |
x2+ y2=1 sin(x+y)=1.2x |
7 |
sin(x-y)-xy=0 x2- y2=0.75 |
19 |
x2+ y2=1 sin(x+y)=0.2+x |
8 |
sin(x+y)-1.5xy=0 x2+ y2=1 |
20 |
x+cos(y-1)=0.8 y- cos(x)=2 |
9 |
sin(x-y)- xy+1=0 x2- y2=0.75 |
21 |
x2+ y2=1 x3+ y3=2 |
10 |
y=1/(x3/2+1) x2+ y2=9 |
22 |
x2+ y2=1 x - y3=0.5 |
11 |
x2+ y2=9 y=1+ e-x |
23 |
x3+ y3=8 y=x3/2 |
12 |
x2+ y2=5 y=1-2 e-xy |
24 |
x3+ y3=8 y=1+x3/2 |
5.5 Control questions
What is the solution of the system of nonlinear equations?
Solving systems of nonlinear equations with MATLAB by iterative methods.
What are the iterative methods for solving systems of nonlinear equations you know?
Give an algorithm for Newton.
Give an algorithm for Simple iterative.
Solving systems of nonlinear equations with MATLAB by function fsolve.
List of the literature
Турчак Л.И. Основы численных методов: Учеб. Пособие. –М.: Наука. Гл.ред.физ.-мат.Лит., 1987. -320с.
Джон Г.Мэтьюз, Куртис Д.Финк. Численные методы. Использование MatLab, 3-е издание. : Пер. с англ. – М.: Издательский дом «Вильямс»№, 2001. -720 с.
Біла Н.І., Бондаренко Л.О. Numeric Methods and Programming on Visual Basic for Applications. Конспект лекцій з дисципліни «Обчислювальна техніка та програмування» для студентів спеціальгості 8.09206.02 з англійською мовою навчання.
Appendix a.
Individual tasks to Lab number 1, 2
№ |
1 |
2 |
1 |
3x4+4x3-12x2-5=0 |
ln(x)+(x+1)3=0 |
2 |
2x3-9x2-60x+1=0 |
x2x=1 |
3 |
x4-x-1=0 |
x+cos(x)=1 |
4 |
2x4 - x2-10=0 |
x+lg(1+x)=1.5 |
5 |
3x4+8x3+6x2-10=0 |
lg(2+x)+2x=3 |
6 |
x4 -18x2+5x-8=0 |
2x+5x-3=0 |
7 |
x4+4x3-12x2+1=0 |
5x+3x =0 |
8 |
x4 - x3-2x2+3x-3=0 |
3ex=5x+2 |
9 |
3x4+4x3-12x2+1=0 |
5x=6x+3 |
10 |
3x4-8x3-18x2+2=0 |
2ex+5x-6=0 |
11 |
2x4-8x3+8x2-1=0 |
2arctg(x)-x+3=0 |
12 |
2x4+8x3+8x2-1=0 |
(x-3) cos(x)=1 |
13 |
x4-4x3-8x2+1=0 |
xx= 20-9x |
14 |
2x4-9x3-60x2+1=0 |
x lg(x)=1 |
15 |
x5 +x2-5=0 |
tg3x=x-1 |
16 |
3x4+4x3-12x2-7=0 |
5x =1+e-x |
17 |
3x4+8x3+6x2-11=0 |
5x =3-ex |
18 |
x4 -18x3-10=0 |
arctg(x2+1/x)=x |
19 |
3x4-8x3-18x2+2=0 |
tg(0.55x+0.1)=x2 |
20 |
x4 -18x -10=0 |
5x-6x =7 |
21 |
x4 +18x -10=0 |
5x-6x =3 |
22 |
x4 +18x3-6x2+x-10=0 |
5x =1+e-2x |
23 |
x5 +12x3-6x2+x-10=0 |
7x-6x =2 |
24 |
3x5-8x3-18x2+2=0 |
5x =2+e-2x |
25 |
x3 -18x -10=0 |
x2x=3 |