Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА 14-21.docx
Скачиваний:
14
Добавлен:
28.04.2019
Размер:
178.34 Кб
Скачать

15. Уравнение Менделеева-Клайперона

Уравнение состояния идеального газа. (Уравнение Менделеева—Клапейрона.) Изопроцессы.      Состояние данной массы газа полностью определено, если известны его давление, температура и объем. Эти величины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.           Для произвольной массы газа состояние газа описывается уравнением Менделеева—Клапейрона: pV = mRT/M, где р — давление, V — объем, m — масса, М — молярная масса, R — универсальная газовая постоянная. Физический смысл универсальной газовой постоянной в том, что она показывает, какую работу совершает один моль идеального газа при изобарном расширении при нагревании на 1 К (R = 8,31 ДжДмоль • К)).           Уравнение Менделеева—Клапейрона показывает, что возможно одновременное изменение трех параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближенно как процессы, в которых изменяются лишь два параметра. Особую роль в физике и технике играют три процесса: изотермический, изохорный и изобарный.           Изопроцессом называют процесс, происходящий с данной массой газа при одном постоянном параметре — температуре, давлении или объеме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.           Изотермическим называют процесс, протекающий при постоянной температуре. Т = const. Он описывается законом Бойля—Мариотта: pV = const.           Изохорным называют процесс, протекающий при постоянном объеме. Для него справедлив закон Шарля: V = const, p/T = const.           Изобарным называют процесс, протекающий при постоянном давлении. Уравнение этого процесса имеет вид V/T = const прир = const и называется законом Гей-Люссака. Все процессы можно изобразить графически (рис. 15).           Реальные газы удовлетворяют уравнению состояния идеального газа при не слишком высоких давлениях (пока собственный объем молекул пренебрежительно мал по сравнению с объемом сосуда,                      в котором находится газ) и при не слишком низких температурах (пока потенциальной энергией межмолекулярного взаимодействия можно пренебречь по сравнению с кинетической энергией теплового движения молекул), т. е. для реального газа это уравнение и его следствия являются хорошим приближением.

Опытные газовые законы, являющиеся частными случаями уравнения Менделеева — Клапейрона для изопроцессов:

а) закон Бойля—Мариотта (изотермический процесс: T=const, m=const)

 или для двух состояний газа, обозначенных цифрами 1 и 2,

,

б) закон Гей-Люссака (изобарический процесс: р=const, m=const)

               или для двух состояний              ,

в) закон Шарля (изохорический процесс: V=const, m=const)

          или для двух состояний             ,

г) объединенный газовый закон (m=const)

           или для двух состояний              .

Под нормальными условиями понимают давление po=1 атм (1,013105 Па), температуру 0оС (T=273 K).

1. Для данной массы газа при постоянной температуре   давление газа изменяется обратно пропорционально объему (закон Бойля-Мариотта):

.

(5)

В соответствии с формулой (5) изотермический процесс представляется на графике гиперболой, которая называется изотермой (рис.3).

2. Для данной массы газа при постоянном давлении   объем газа изменяется линейно с температурой (закон Гей-Люссака):

,

(6)

где   - объем газа при 0oС, V - объем газа при температуре   - коэффициент объемного расширения газа.

3. Для данной массы газа при постоянном объеме   давление газа изменяется линейно с температурой (закон Шарля):

,

(7)

где   - давление газа при 0oС, P - давление газа при температуре  ,   - термический коэффициент давления газа.

Оказалось, что для всех газов

.

Согласно формулам (6) и (7), изобарический и изохорический процессы представляются на графиках прямыми линиями (изобарами и изохорами), проходящими наклонно к оси температур и пересекающими ее в точке   (рис.4, 5).

Точка   принята за начало отсчета (нуль) новой шкалы температур, называемой термодинамической шкалой или шкалой Кельвина, или абсолютной шкалой. Температура, отсчитываемая по этой шкале, называется термодинамической; нуль этой шкалы называется нулем Кельвина.