
- •2. Основные типы кристаллических решеток металлов
- •3. Анизотропия кристаллов. Полиморфизм. Примеры.
- •4. Дефекты строения реальных металлов. Точечные дефекты. Линейные дефекты. Поверхностные дефекты. Влияние дефектов на свойства кристаллов.
- •5. Строение металлических сплавов. Понятия: сплав, виды сплавов термодинамическая система, компонент, фаза.
- •6. Твердые растворы, механические смеси, химические соединения: определение, условия образования, примеры.
- •7. Кристаллизация: движущая сила кристаллизации металлов. Механизм и кинетика кристаллизации. Кристаллизация: зарождение и рост кристаллов.
- •8. Факторы, влияющие на процесс кристаллизации. Форма и размеры кристаллов. Строение слитков металлов.
- •9. Диаграммы состояния системы с неограниченной растворимостью компонентов в твердом состоянии. Примеры.
- •10.Диаграммы состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой. Примеры
- •11.Диаграммы состояния сплавов с нерастворимостью компонентов в твердом состоянии и эвтектикой. Примеры.
- •12.Диаграммы состояния сплавов с образованием устойчивого химического соединения.
- •13.Связь свойств сплавов с типом диаграмм состояния.
- •13(А)Диаграмма состояния железо-углерод. Фазы и структурные составляющие железоуглеродистых сплавов.
- •14.Структура углеродистых сталей и чугунов.
- •15.Напряженное состояние. Упругая деформация. Влияние упругой деформации на свойства металлов.
- •16.Пластическая деформация. Механизмы пластической деформации. Дислокационный механизм пластической деформации: консервативное движение и переползание дислокаций.
- •17.Влияние нагрева на структуру и свойства деформированного металла: возврат, первичная, собирательная и вторичная рекристаллизация.
- •18.Особенности деформации поликристаллов. Влияние пластической деформации на структуру и свойства металлов. Упрочнение при пластической деформации. То
- •19.Термическая обработка металлов и сплавов. Классификация видов термической обработки.
- •24.Закалка сталей - полная и неполная. Понятие о критической скорости закалки. Закалка сталей на мартенсит.
- •25.Превращения, происходящие при отпуске закаленной стали. Низкий, средний и высокий отпуск.
- •26.Диаграмма изотермического превращения переохлажденного аустенита (с-диаграмма).
- •27.Химико-термическая обработка. Общие закономерности.
- •28.Цементация сталей.
- •29.Азотирование и нитроцементация сталей.
- •30.Чугуны. Фазы и структурные составляющие белых чугунов.
- •31.Чугуны. Виды чугунов. Фазы и структурные составляющие серых чугунов.
- •32.Углеродистые стали. Влияние углерода и примесей на свойства, стали. Конструкционные углеродистые стали обыкновенного качества и качественные.
- •33.Классификация и маркировка легированных сталей. Особенности закалки и отпуска легированных сталей.
- •34.Легированные стали. Влияние легирующих элементов на свойства стали. Карбиды в легированных сталях.
- •35.Классификация по назначению и маркировка легированных сталей.
- •36.Сплавы на основе алюминия. Общие сведения. Классификация и маркировка алюминиевых сплавов.
- •37.Технический титан. Взаимодействие титана с легирующими элементами.
- •38.Классификация и маркировка титановых сплавов, α-сплавы: легирование, термообработка, свойства.
- •39.Сплавы на основе меди: латуни.
14.Структура углеродистых сталей и чугунов.
Углеродистые стали - Fe – основа, С <= 1,3%. Примеси а) полезные Mn<0,7% -вводят специально как раскислитель. Повышает плотность на снижая пластичность и вязкость. Si<0,5%- вводят специально как раскислитель.б) вредные S<0,06%-присутствует в виде FeS и обеспечивает красноломкость стали-потеря пластичности при горячей обрадотки Ме давлением(800-1200оС). P<0,06%-обеспечивает хладноломкость-потеря пластичности при комнатной тем-ре. N<0,02…0,002% и O<0,02…0,002%. Нитриды и оксиды повышают прочность, но снижают вязкость за счет увеличения порога хладноломкости H<0,001…0,0007%. в) Cu Cr Ti Ni- случайные. Чем больше С, тем больше твердость, меньше пластичность и вязкость. Чем меньше С, тем больше цементита, который отличается высокой твердостью и очень высокой хрупкостью. Плотность с увеличением содержания С возрастает, достигая максимума при 0,8-0,9% С, затем падает. Падение прочности обусловлено образованием цементитной сетки.
15.Напряженное состояние. Упругая деформация. Влияние упругой деформации на свойства металлов.
Деформация металлов. Деформацией называется изменение формы и размеров тела под действием приложенных сил. При приложении сил в Ме возникают напряжения. Напряжение – сила, действующая на единицу площади сечения детали.
Виды напряжений. Металл, находящийся в напряженном состоянии, при любом виде нагружения всегда испытывает напряжения (нормальные растягивающее и сжимающее) и касательные. Различают временное напряжение, обусловленное действием внешней нагрузки и исчезающее после ее снятия. Напряжение внутренне (остаточное) возникает и уравновешивается в переделах тела без действия внешний нагрузки. Виды деформаций: упругая – обратимое изменение формы и размеров тела под действием приложенных сил. При упругом деформировании изменяются расстояния между атомами металла в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места, и деформация исчезает., пластическая – необратимое изменение формы и размеров тела под действием приложенных сил. При пластическом деформировании одна часть кристалла перемещается по отношению к другой под действием касательных напряжений. При снятии нагрузок сдвиг остается, т.е. происходит пластическая деформация. В результате развития пластической деформации может произойти вязкое разрушение путем сдвига.
16.Пластическая деформация. Механизмы пластической деформации. Дислокационный механизм пластической деформации: консервативное движение и переползание дислокаций.
1)Пластическая деформация в монокристалле носит сдвиговый хар-р. Основной механизм дефор-ии – скольжение по определенным кристаллографическим плоскостям и направлениям. Дефор-я происходит под действием касательных напряжений, когда они превышают критические значения. 2) Сдвиги происходят по плоскостям и направлениям наиболее плотно упакованных атомов. Чем больше таких плоскостей и направлений, тем пластичнее Ме. 3) Сдвиг происходит не сразу по всей плоскости, а в результате пробела дислокации по плоскости скольжения. 4) В процессе деформации не только перемещаются, но и размножаются. Вначале дислокации перемещаются по параллельным плоскостям, а в дальнейшем они начинают пересекаться по пересекающимся, испытывая сопротивление со стороны других дислокаций. В результате для перемещения дислокаций напряжения необходимо во время увеличивать. 5) В процессе деформации происходит упрочнение Ме (наклеп).
Сущность упрочнения. Заключается в росте плотности дислокаций и увеличении сопротивления их перемещения.