
- •А.А. Халафян
- •Лекция 1. Теории вероятностей. История возникновения. Классическое определение вероятности
- •Классическое определение вероятности
- •Лекция 2. Теоремы сложения и умножения вероятностей. Статистическое, геометрическое определение вероятности
- •Статистическое определение вероятности
- •Геометрическое определение вероятности
- •Последовательность испытаний. Формула Бернулли
- •Лекция 3. Аксиоматическое построение теории вероятностей. Аксиоматика колмогорова
- •Лекция 4. Случайная величина. Функция распределения
- •Основные свойства функции распределения
- •X1 x2 … xn …, причём xn→-∞, n→∞.
- •Лекция 6. Интегральная теорема муавра–лапласа, теорема бернулли
- •Лекция 7. Непрерывные случайные величины
- •Свойства непрерывной случайной величины
- •Законы распределения непрерывных случайных величин Равномерное распределение
- •Экспоненциальное распределение
- •Нормальное распределение
- •Лекция 8. Понятие многомерной случайной величины
- •Аналогично закон распределения y имеет вид
- •Лекция 9. Функция распределения многомерной случайной величины
- •Плотность вероятностей двумерной случайной величины
- •Лекция 10. Свойства плотности вероятностей двумерной случайной величины
- •Лекция 11. Функции от случайных величин
- •Лекция 12. Теорема о плотности суммы двух случайных величин
- •Лекция 13. Распределения стьюдента, фишера .Числовые характеристики случайных величин
- •Числовые характеристики случайных величин
- •Свойства математического ожидания случайной величины
- •Лекция 14. Числовые характеристики случайных величин (продолжение)
- •Другие характеристики центра группирования случайной величины
- •Характеристики вариации случайной величины
- •Свойства дисперсии
- •Свойства среднеквадратического отклонения
- •Лекция 15. Вычисление дисперсии основных распределений
- •Лекция 16. Числовые характеристики меры связи случайных величин
- •Лекция 17. Предельные теоремы теории вероятностей. Неравенство чебышева. Закон больших чисел
- •Неравенство Чебышева
- •Закон больших чисел
- •Закон больших чисел для одинаково распределенных случайных величин
- •Закон больших чисел в форме Бернулли
- •Лекция 18. Центральная предельная теорема
- •Лекция 19. Математическая статистика. Предмет математической статистики. Вариационные ряды
- •Лекция 20. Средние величины. Показатели вариации
- •Свойства среднего арифметического
- •Показатели вариации (изменчивости) вариационного ряда
- •Свойства дисперсии
- •Статистическая выборка
- •Лекция 21. Оценка параметров генеральной совокупности
- •Лекция 22. Точечные и интервальные оценки параметров распределения Метод наибольшего правдоподобия
- •Метод моментов
- •Интервальная оценка
- •Лекция 23. Проверка статистических гипотез
- •Лекция 24. Проверка гипотезы о равенстве средних
- •Проверка гипотезы о равенстве дисперсий
- •Проверка гипотезы о законе распределения
- •Лекция 25. Элементы регрессионного и корреляционного анализов
- •Линеаризующие преобразования
- •Линейный множественный регрессионный анализ
- •Множественный корреляционный анализ
- •Библиографические ссылки
Свойства дисперсии
Выборочная дисперсия постоянной равна нулю, т.е. если х = с, то S2с = 0.
Если все варианты увеличить (уменьшить) в одно и тоже число k раз, то дисперсия увеличится в k2 раз
S2кх = к2S2х. (7)
3. Если все варианты увеличить (уменьшить) на одно и тоже значение, то дисперсия не изменится
S2х+с = S2х; (8)
.
4. Дисперсия равна разности между средней арифметической квадратов вариантов и квадратом средней арифметической
;
(9)
5. Если ряд состоит из нескольких групп наблюдений, то общая дисперсия равна сумме средней арифметической групповых дисперсий и межгрупповых дисперсий
,
(10)
где Sх2 – дисперсия всего ряда,
Sg2
=
– средняя арифметическая групповых
дисперсий,
– межгрупповая
дисперсия.
Другими характеристиками вариационного ряда являются начальные и центральные моменты k -го порядка, коэффициент асимметрии, эксцесса и т.д.
Заметим, что среднее арифметическое, дисперсия и другие характеристики вариационного ряда являются статистическими аналогами (оценками) математического ожидания, дисперсии и т.д.
Статистическая выборка
В статистике различают два вида наблюдений – сплошное, когда изучают все объекты совокупности, и выборочное, когда изучается часть объектов.
Примеры сплошных наблюдений: перепись населения, референдумы, медкомиссия призывников и т.д. Примеры выборочных наблюдений: социологические исследования, контроль качества, медицинские анализы, изучение флоры и фауны и т.д.
Определение 5. Вся совокупность объектов, подлежащих изучению, называется генеральной совокупностью. Дадим более строгое определение генеральной совокупности.
Определение 6. Генеральной совокупностью называется вероятностное пространство {Ω,S,P}и определенная на этом пространстве совокупность случайных величин Х (признаков).
Определение 7. Единицей (элементом) генеральной совокупности называется элементарное событие и отвечающее ему значение случайной величины Х (признака).
Определение 8. Часть объектов, которая отобрана из генеральной совокупности для изучения, называется выборкой (выборочной совокупностью).
Определение 9. Случайной выборкой объема n называется последовательность Х1, Х2,… Хn n независимых, одинаково распределенных случайных величин, распределение каждой из которых совпадает с распределением исследуемой случайной величины Х.
Конкретный набор выборочных значений следует рассматривать как реализацию (одну из многих) многомерной случайной величины Х1, Х2, …, Хn, компоненты которой независимы и имеют одну и ту же функцию распределения F(x), соответствующую генеральной совокупности.
Преимущества выборочного метода перед сплошным наблюдением:
– более экономичный в плане материальных затрат;
– единственно возможный в случае бесконечной генеральной совокупности или когда исследование сопровождается уничтожением наблюдаемых объектов.
Определение 10. Выборка называется репрезентативной, если она достаточно хорошо воспроизводит генеральную совокупность.
Различают следующие виды выборки:
– случайная выборка, состоящая в случайном выборе элементов совокупности;
– механическая выборка, в которую элементы из генеральной совокупности отбираются через определенные интервалы (например, каждый десятый);
– типическая (стратифицированная) выборка – генеральная совокупность разбивается на группы и в них делается выборка;