- •Векторное пространство. Пространства арифметических и алгебраических векторов.
- •Линейное (векторное) пространство
- •2.Векторы на плоскости и в пространстве. Линейные операции над векторами.
- •3. Линейная зависимость и независимость векторов. Базис.
- •Скалярное произведение. Длина вектора. Геометрическая интерпретация в случае двух и трех измерений.
- •Длина вектора
- •Геометрическая интерпретация
- •5.Условие перпендикулярности и параллельности векторов. Условие компланарности векторов.
- •6.Проекция вектора на ось и её свойства.
- •Матрицы. Линейные операции над матрицами. Умножение матриц.
- •Матрицы. Свойство операций сложения и умножений матриц.
- •9. Определитель н-го порядка. Свойства определителей.
- •2 Вариант
- •10.Свойство определителей.
- •11. Обратная матрица.(Определение,условия существования)
- •13. Система линейных уравнений. Матричная форма записи системы линейных уравнений. Решение систем линейных уравнений с помощью обратной матрицы.
- •14. Система линейных уравнений. Решение слау методом Крамера.
- •Равносильность систем линейных уравнений. Расширенная матрица системы. Элементарные преобразования.
- •16. Метод Гаусса для решения систем линейных алгебраических уравнений. Решение систем с единичной подматрицей у матрицы коэффициентов. Базисное решение.
- •17.Решение систем линейных алгебраических уравнений с канонической расширенной матрицей.
- •Ранг матрицы. Равносильность различных определений. Ранг расширенных матриц для решения совместных и неопределенных систем.
- •Линейный оператор. Собственные значения и собственные вектора линейного оператора.
- •21..Прямая на плоскости.(Различные виды уравнений прямой,угол между прямыми)
- •23. Взаимное расположение прямых и исследование системы двух уравнений с двумя неизвестными
- •24..Плоскость в пространстве(Различные виды уравнений плоскости,угол между плоскостями)
- •25. .Прямая в пространстве и ее различные уравнения.Угол между прямыми и между прямой и плоскостью.Точка пересечения прямой и плоскости
- •Скалярное произведение в н-мерном пространстве. Определение, свойства, угол между векторам
- •27.Скалярное произведение в n-мерном пространстве.Определение,свойства,угол между векторами
- •28.Кривые второго порядка. Анализ уравнения. Виды крывих
- •2 9. Окружность. Вывод канонического уравнения
- •31.Формула перехода к новому базису линейного пространства. Линейная функция и линейный оператор в различных базисах.
- •32. Квадратичная форма и её матрица.
- •22. Прямая на плоскости. Уравнение прямой по точке и направляющему вектору. Уравнение прямой, проходящей через 2 точки. Параметрическое уравнение прямой.
31.Формула перехода к новому базису линейного пространства. Линейная функция и линейный оператор в различных базисах.
Пусть заданы линейные пространства X и Y. Правило, по которому каждому элементу x e X ставится в соответствие единственный элемент y e Y , называется оператором, действующим в линейных пространствах X , Y. Результат действия оператора A на элемент x обозначают y = A x или y = A(x). Если элементы x и y связаны соотношением y = A x, то y называют образом элемента x; элемент xпрообразом элемента y.
Множество элементов линейного пространства X, для которых определено действие оператора A, называют областью определения оператора и обозначают D(A).
Множество элементов линейного пространства Y, которые являются образами элементов из области определения оператора A, называют образом оператора и обозначают Im(A). Если y = A x , то x e D(A), ye Im(A) .
Оператор A, действующий в линейных пространствах X , Y называется линейным оператором, если
A(u+v)=A(u)+A(v) и A(au)=aA(u) и для любых u,v e X и для любого числа a.
Если пространства X и Y совпадают, то говорят, что оператор действует в пространстве X. В дальнейшем ограничимся рассмотрением линейных операторов, действующих в линейном пространстве X.
Линейный оператор и его матрица. Переход к другому базису
Рассмотрим линейный оператор A, действующий в конечномерном линейном пространстве X, dim(x)=n и пусть e1, e2, ..., en - базис в X. Обозначим через A e1 = (a11,...,an1), ... , A en = (a1n,...,ann) образы базисных векторов e1, e2, ..., en .
Матрица
столбцами которой являются координаты образов базисных векторов, называется матрицей линейного оператора в заданном базисе.
Доказано,
что каждому линейному оператору,
действующему в n-мерном линейном
пространстве, отвечает единственная
квадратная матрица порядка n; и
обратно
каждая квадратная
матрица порядка n задает единственный
линейный оператор, действующий в этом
пространстве. При этом соотношения
с одной стороны, связывают координаты образа y = A x с координатами прообраза X, с другой стороны, описывают действие оператора, заданного матрицей A.
При изменении базиса линейного пространства матрица оператора, очевидно, изменяется. Пусть в пространстве X произошел переход от базиса e = {e1, ... , en} к базису e' = {e'1, ... , e'n} . Связь между матрицей Ae оператора A в базисе e и матрицей Ae' этого оператора в базисе e' задается формулой
Здесь
-
матрица перехода от базиса e к базису
e' и обратная к ней.
32. Квадратичная форма и её матрица.
Квадратичной формой L(x1,x2…xn) n-переменных,назыывается сумма каждый член которой,является либо квадратом одной из переменных,либо произведением двух разных переенных взятых с некоторым коэфицентом
aij-коэфицент матричной формы
A=(aij)-матрица квадратичной формы
L=
-матричная
запись квадратичной формы
Пусть
матрица,столбцы переменных х и у
Связанны
линейным соотношением,где (X=CY)
C-есть
некоторая невырожденая матрица,тогда
кв.форма
При
невырожденом линейном преобразовании
X=CY
,матрица квадратичной формы принимает
вид
