- •1 Вопрос:
- •Вопрос 2:
- •Вопрос 3 нормальное значение редукции и аномалии
- •Вопрос 4 методика гравиметрической съемки
- •Вопрос 5
- •Аналитические способы решения прямых задач гравиразведки.
- •1.3.2. Прямая и обратная задачи над шаром.
- •1.3.3. Прямая и обратная задачи над горизонтальным бесконечно длинным круговым цилиндром.
- •Вопрос 6 качественная и количественная интерпритация
- •Вопрос 7
- •Вопрос 8 элементы земного магнетизма
- •Вопрос 9 нормальное и аномальное поле Земли
- •Вопрос 10 методика магнитных съемок
- •3.3.1 Полевая магнитная съемка
- •3.3.2 Аэромагнитные и гидромагнитные съемки
- •Вопрос 11
- •4.3.4. Прямая и обратная задачи над вертикально намагниченным шаром.
- •4.3.5. Прямая и обратная задачи над вертикально намагниченным тонким пластом бесконечного простирания и глубины.
- •Вопрос 12
- •Вопрос 13
- •Вопрос 14
- •Вопрос 15
- •Вопрос 16 электромагнитные свойства гп
- •Вопрос 17
- •Вопрос 20
- •Зондирование методом вызванной поляризации.
- •Билет 21 Метод естественного электрического поля.
- •Электропрофилирование методом сопротивлений.
- •Электропрофилирование методом вызванной поляризации.
- •Низкочастотное гармоническое профилирование.
- •Методы переходных процессов.
- •Тепловое поле Земли и его параметры
- •Региональный тепловой поток в земной коре.
- •13.1.3. Локальный тепловой поток.
- •Радиотепловые и инфракрасные съемки
- •14.3. Региональные термические исследования
- •14.4. Локальные методы терморазведки
- •14.4.1. Поисково-разведочные термические исследования.
- •14.4.2. Применение терморазведки для изучения геологической среды.
- •Естественная радиоактивность.
- •Радиоактивность минералов.
- •15.2.2. Радиоактивность горных пород, руд и вод.
- •Пешеходная (наземная) гамма-съемка.
- •Эманационная съемка.
- •Общая характеристика.
- •16.3.2. Нейтронные методы.
- •Гамма-методы.
- •Новы геометрической сейсмики.
- •Типы сейсмических волн.
- •Экогеофизика и экогеология.
- •Билет 44 Поисково-разведочные геофизические работы на нефть и газ
- •Общая характеристика инженерно-геологической геофизики.
- •Билет 34 Общая характеристика аппаратуры для сейсморазведки.
- •35 Вопрос
- •36 Вопрос
- •18.1.1. Метод естественного поля.
- •Сейсмические методы.
- •Вопрос 37 Ядерные методы исследования скважин
- •Методы скважинных исследований с искусственным облучением горных пород.
- •Сейсмические методы.
- •18.3.2. Акустические методы.
- •Вопрос 39 Необходимость комплексирования разных методов изучения земных недр и виды геофизических комплексов.
- •1.1.2. Методология и виды геофизических комплексов.
- •Вопрос 40 Методы глубинной геофизики и строение Земли по геофизическим данным
- •Вопрос 41 Общая характеристика методов региональной геофизики
- •Региональные структурные среднемасштабные геофизические исследования
- •Вопрос 42 поиски и разведка рудных месторождений
- •4.2.1. Региональные и геолого-съемочные работы на рудные полезные ископаемые.
- •4.2.2. Поисково-разведочные геофизические работы на рудные полезные ископаемые (рудная геофизика).
- •Разведка угольных месторождений полевыми и скважинными геофизическими методами.
- •Общая характеристика нерудных и твердых горючих полезных ископаемых.
Новы геометрической сейсмики.
Кинематические законы распространения упругих волн базируются на принципах геометрической сейсмики или геометрической оптики.
Если в некоторой точке пространства произвести взрыв (удар), то возникает упругая волна, скорость распространения которой зависит от упругих свойств среды. При прохождении волны частицы породы начинают колебаться. Поверхность, отделяющая область, где частицы колеблются под воздействием упругой волны, и невозмущенную область, куда волна еще не пришла, называется фронтом волны. Линии, перпендикулярные фронту, называются сейсмическими лучами. Вдоль лучей переносится энергия упругой волны. Вблизи источника фронт упругих волн сферический, а вдалеке - практически плоский.
Каждую
монохроматическую волну одной частоты
можно охарактеризовать через длину
волны (
),
период (
)
или частоту колебания (
),
которые связаны с фазовой скоростью
(
)
соотношением
.
В сейсморазведке используются упругие
волны частотой 2 - 120 Гц, что при скоростях
в породах от 1 до 7 км/с дает длины волн
3500 - 9 м соответственно.
В
упругом импульсе наблюдается суперпозиция
(сложение) монохроматических волн,
каждая из которых обладает фазовой
скоростью (
),
амплитудой (
),
круговой частотой (
,
т.е.
),
где
-
время. При постоянстве фазовых скоростей
в импульсе его скорость, называемая
групповой (
),
совпадает с фазовой. При наличии дисперсии
(изменений фазовых скоростей с частотой)
форма импульса меняется в ходе его
распространения. При этом
,
если
возрастает
с ростом
,
и
,
если
уменьшается
с ростом
.
Законы распространения упругих волн в горных породах могут быть получены из основных принципов геометрической оптики - принципов Гюйгенса - Ферма. Согласно принципу Гюйгенса, каждую точку фронта волны можно рассматривать как самостоятельный элементарный источник колебаний. Это значит, что по положению фронта волны в некоторый момент можно определить положение его в любой другой момент, если построить огибающую элементарных сферических фронтов с центрами, расположенными на заданном. Принцип Ферма формулируется следующим образом: волна распространяется между двумя точками по такому пути, который требует наименьшего времени для ее распространения. Следствием этого принципа является прямолинейность распространения волн в изотропной среде, когда скорость постоянна во всех направлениях.
Важный принцип геометрической сейсмики - принцип суперпозиции, согласно которому при наложении (интерференции) нескольких упругих волн их распространение можно изучать по отдельности для каждой волны, пренебрегая влиянием волн друг на друга.
Основным законом геометрической сейсмики является закон преломления - отражения, который включает следующие положения (см. рис. 4.1): 1) падающие, отраженные и преломленные лучи лежат в одной плоскости, совпадающей с плоскостью, нормальной к границе раздела сред с разными скоростями упругих волн; 2) угол падения волны , отсчитываемый от перпендикуляра к границе, и ее скорость в среде связаны с углом преломления и скоростью соотношением ; 3) этим же соотношением связаны углы падения ( ) и отражения ( ): \ . Для волн одного типа, например продольных, , что приводит к закону равенства углов падения и отражения.
|
Рис. 4.1.. Основные типы продольных волн: а - 1 - прямая, 2 - отраженная, 3 - преломленная проходящая, 4 - преломленная скользящая, 5 - преломленная головная; б и в - рефрагированные волны, образующиеся во втором слое и в среде с возрастающими с глубиной скоростями упругих волн |
В
сейсморазведке к законам геометрической
оптики добавляются законы отражения и
преломления обменных волн: любая падающая
волна - продольная (
)
или поперечная (
)
- порождает на границе две отраженные
(
и
)
и две преломленные (
и
)
волны, связанные законом Снеллиуса:
|
(4.3) |
В
теории сейсморазведки показано, что
при падении Р-волны на границу по нормали
(
)
не образуются
-волны,
а вся энергия переходит в отраженную и
преломленную
-волны.
Поэтому в сейсморазведке чаще используются
волны
,
распространяющиеся по лучам, близким
к нормальным.
Билет 29
