- •1 Вопрос:
- •Вопрос 2:
- •Вопрос 3 нормальное значение редукции и аномалии
- •Вопрос 4 методика гравиметрической съемки
- •Вопрос 5
- •Аналитические способы решения прямых задач гравиразведки.
- •1.3.2. Прямая и обратная задачи над шаром.
- •1.3.3. Прямая и обратная задачи над горизонтальным бесконечно длинным круговым цилиндром.
- •Вопрос 6 качественная и количественная интерпритация
- •Вопрос 7
- •Вопрос 8 элементы земного магнетизма
- •Вопрос 9 нормальное и аномальное поле Земли
- •Вопрос 10 методика магнитных съемок
- •3.3.1 Полевая магнитная съемка
- •3.3.2 Аэромагнитные и гидромагнитные съемки
- •Вопрос 11
- •4.3.4. Прямая и обратная задачи над вертикально намагниченным шаром.
- •4.3.5. Прямая и обратная задачи над вертикально намагниченным тонким пластом бесконечного простирания и глубины.
- •Вопрос 12
- •Вопрос 13
- •Вопрос 14
- •Вопрос 15
- •Вопрос 16 электромагнитные свойства гп
- •Вопрос 17
- •Вопрос 20
- •Зондирование методом вызванной поляризации.
- •Билет 21 Метод естественного электрического поля.
- •Электропрофилирование методом сопротивлений.
- •Электропрофилирование методом вызванной поляризации.
- •Низкочастотное гармоническое профилирование.
- •Методы переходных процессов.
- •Тепловое поле Земли и его параметры
- •Региональный тепловой поток в земной коре.
- •13.1.3. Локальный тепловой поток.
- •Радиотепловые и инфракрасные съемки
- •14.3. Региональные термические исследования
- •14.4. Локальные методы терморазведки
- •14.4.1. Поисково-разведочные термические исследования.
- •14.4.2. Применение терморазведки для изучения геологической среды.
- •Естественная радиоактивность.
- •Радиоактивность минералов.
- •15.2.2. Радиоактивность горных пород, руд и вод.
- •Пешеходная (наземная) гамма-съемка.
- •Эманационная съемка.
- •Общая характеристика.
- •16.3.2. Нейтронные методы.
- •Гамма-методы.
- •Новы геометрической сейсмики.
- •Типы сейсмических волн.
- •Экогеофизика и экогеология.
- •Билет 44 Поисково-разведочные геофизические работы на нефть и газ
- •Общая характеристика инженерно-геологической геофизики.
- •Билет 34 Общая характеристика аппаратуры для сейсморазведки.
- •35 Вопрос
- •36 Вопрос
- •18.1.1. Метод естественного поля.
- •Сейсмические методы.
- •Вопрос 37 Ядерные методы исследования скважин
- •Методы скважинных исследований с искусственным облучением горных пород.
- •Сейсмические методы.
- •18.3.2. Акустические методы.
- •Вопрос 39 Необходимость комплексирования разных методов изучения земных недр и виды геофизических комплексов.
- •1.1.2. Методология и виды геофизических комплексов.
- •Вопрос 40 Методы глубинной геофизики и строение Земли по геофизическим данным
- •Вопрос 41 Общая характеристика методов региональной геофизики
- •Региональные структурные среднемасштабные геофизические исследования
- •Вопрос 42 поиски и разведка рудных месторождений
- •4.2.1. Региональные и геолого-съемочные работы на рудные полезные ископаемые.
- •4.2.2. Поисково-разведочные геофизические работы на рудные полезные ископаемые (рудная геофизика).
- •Разведка угольных месторождений полевыми и скважинными геофизическими методами.
- •Общая характеристика нерудных и твердых горючих полезных ископаемых.
Билет 21 Метод естественного электрического поля.
Метод естественного электрического поля (ЕП, МЕП) или метод собственных потенциалов (СП, ПС) основан на изучении локальных электрических постоянных полей, возникающих в горных породах в силу различных физико-химических процессов (см. 7.1.2). Небольшие собственные потенциалы диффузионно-адсорбционной и фильтрационной природы существуют практически повсеместно. Интенсивные же поля окислительно-восстановительной природы наблюдаются, как правило, только над сульфидными и графитными залежами. Естественные электрические поля могут возникнуть также при коррозии трубопроводов и других подземных металлических конструкций, при ухудшении их гидроизоляции и на участках с низкими УЭС пород. Для измерения ЕП применяются милливольтметры постоянного тока и неполяризующиеся электроды (см. 8.1.2).
Съемка естественных электрических потенциалов выполняется либо по отдельным линиям (профильная съемка), либо по системам обычно параллельных профилей, равномерно покрывающих изучаемый участок (площадная съемка). Направления профилей выбираются вкрест предполагаемого простирания прослеживаемых объектов, а расстояния между ними могут меняться от 10 до 100 м и должны быть в несколько раз меньше ожидаемой длины рудных тел или иных разведываемых геологических объектов.
На каждом профиле равномерно размечаются пункты измерения потенциалов. Расстояния между точками наблюдений (шаг съемки) меняются от 5 до 50 м в зависимости от масштаба съемки, характера и интенсивности электрического поля. Расстояние между профилями при площадной съемке может быть равно или в 2 - 3 раза превышать шаг наблюдений.
Съемка
естественных потенциалов может
выполняться двумя способами: способом
потенциала (
),
при котором производятся измерения
разности потенциалов между одной
неподвижной точкой и всеми пунктами
наблюдений изучаемого профиля или
площади, и способом градиента-потенциала
(
),
при котором измеряется разность
потенциалов между двумя электродами,
расположенными на постоянном расстоянии
друг от друга и перемещаемыми одновременно
по профилям. Съемка бывает полевой,
акваториальной, подземной и скважинной.
Для работ используются неполяризующиеся
электроды разных конструкций, например,
медный электрод, помещенный в пористый
сосуд с раствором медного купороса.
По результатам съемки ЕП строятся графики, карты графиков и карты или .
Метод естественного поля применяется для поисков и разведки сульфидных, графитных и угольных месторождений, при литологическом и гидрогеологическом картировании, выявлении участков коррозии трубопроводов и решении других задач. Глубинность метода ЕП не превышает 500 м, а при решении ряда задач составляет десятки метров.
Электропрофилирование методом сопротивлений.
Электрическое профилирование или электропрофилирование (ЭП) - это такая модификация метода сопротивлений, при которой вдоль заданных профилей измеряется кажущееся сопротивление с помощью установок постоянного размера, а значит и постоянной глубинности. Она может меняться в разных геоэлектрических условиях от 1/3 до 1/10 величины АВ.
При электропрофилировании используются переносная электроразведочная аппаратура (см. 8.1.2) и различные установки (см. рис. 3.2). Простейшей установкой для ЭП является симметричная ( АМNВ), когда все электроды АМNВ с соединяющими их проводами последовательно перемещаются вдоль линии наблюдений с постоянным шагом съемки. Как и в ВЭЗ, измеряются и , по которым рассчитывается КС. Взаимные расстояния между электродами во всех пунктах измерения остаются постоянными. Применяются и другие установки электропрофилирования:
трехэлектродные с двумя встречными установками АМN, С в и МNВ, С в , где С - общий питающий электрод, удаленный в бесконечность, т.е. на расстояния в 5 - 10 раз больше АВ (такое ЭП называется комбинированным);
срединного градиента, когда приемная линия перемещается в средней трети АВ;
дипольные и др. (см. 7.3.2).
Иногда ЭП выполняется на двух-трех разносах АВ, отличающихся примерно в 3 раза по длине.
При электропрофилировании любой установкой профили прокладываются вкрест предполагаемого простирания структур или искомых объектов. Шаг установки берется обычно равным МN и несколько меньшим ожидаемой ширины разведываемых геологических объектов.
В результате электропрофилирования строятся графики, карты графиков, а также карты КС для каждого разноса питающих электродов. Глубинность ЭП не превышают 500 м. Метод ЭП широко применяeтся при геологическом, инженерно-геологическом, мерзлотно-гляциологическом, экологическом картировании, поисках твердых полезных ископаемых.
