Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры_теория_вероятности.doc
Скачиваний:
16
Добавлен:
26.04.2019
Размер:
857.6 Кб
Скачать
  1. Функція розподілу ймовірностей та її властивості.

Закон розподілу ймовірностей можна подати у формі, яка придатна і для дискретних, і для неперервних випадкових величин, а саме: як функцію розподілу ймовірностей випадкової величини F(х), так звану інтегральну функцію.

Функцію аргументу х, що визначає ймовірність випадкової події Х < x, називають функцією розподілу ймовірностей:

F(x) = P(X < x) (1)

Властивості F(x):

1.

2.  є неспадною функцією, а саме , якщо .

_________________________________

  1. Щільність ймовірностей та її властивості.

Для неперервних випадкових величин закон розподілу ймовірностей зручно описувати з допомогою щільності ймовірностей, яку позначають f (x). Щільністю ймовірностей неперервної випадкової величини Х називається перша похідна від інтегральної функції F(x):

звідки

Властивості f (x)

  1. .

2. Умова нормування неперервної випадкової величини Х:

3. Імовірність попадання неперервної випадкової величини в інтервалі обчислюється за формулою

4. Функція розподілу ймовірностей неперервної випадкової величини має вигляд

_________________________________

  1. Математичне сподівання.

Однією з найчастіше застосовуваних на практиці характеристик є математичне сподівання.

Математичним сподіванням випадкової величини Х, визначеною на дискретному просторі Ω, називається величина

Якщо простір Ω є неперервним, то математичним сподіванням неперервної випадкової величини Х називається величина

Якщо випадкова величина Х  [а; b], то М (Х)  [а; b], а саме: математичне сподівання випадкової величини має обов’язково міститься всередині інтервалу [а; b], являючи собою центр розподілу цієї величини.

_________________________________

24. Властивості математичного сподівання.

1. Математичне сподівання від сталої величини С дорівнює самій сталій:

М (С) = С.

2. М (СХ) = СМ (Х).

Для дискретної випадкової величини маємо

.

Для неперервної:

3. Якщо А і В є сталими величинами, то

.

_________________________________

  1. Мода та медіана.

Модою (Мo) дискретної випадкової величини Х називають те її можливе значення, якому відповідає найбільша ймовірність появи.

Модою для неперервної випадкової величини Х називають те її можливе значення, якому відповідає максимальне значення щільності ймовірності:

f (Mо) = max.

Якщо випадкова величина має одну моду, то такий розподіл імовірностей називають одномодальним; якщо розподіл має дві моди — двомодальним і т. ін. Існують і такі розподіли, які не мають моди. Їх називають антимодальними.

Медіаною (Ме) неперервної випадкової величини Х називають те її значення, для якого виконуються рівність імовірностей подій:

Ме можна знайти, скориставшись щільністю ймовірностей:

(2)

або при Х  [а; b]:

. (3)

Отже, Ме — можливе значення випадкової величини Х, причому таке, що пряма, проведена перпендикулярно до відповідної точки на площині Х = Ме, поділяє площу фігури, яка обмежена функцією f (x), на дві рівні частини.

_________________________________

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]