Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GOTOVAYa.doc
Скачиваний:
18
Добавлен:
26.04.2019
Размер:
1.41 Mб
Скачать

21. Постулаты Бора

Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам для которых момент импульса квантуется , где n — натуральные числа, а   — постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии hν = En − Em, где En;Em — энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний — поглощается.

Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома

22 Теория Бора для водородоподобных сил

Б о́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модельатома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1] .

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты Rn и энергии En находящегося на этой орбите электрона:

Здесь me — масса электрона, Z — количество протонов в ядре, ε0 — диэлектрическая постоянная, e — заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера, решая задачу о движении электрона в центральном кулоновском поле.Радиус первой орбиты в атоме водорода R0=5,2917720859(36)×10−11 м[2], ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты E0 = − 13.6 эВ представляет собой энергию ионизации атома водорода.

23 Гипотеза де Бройля. Дифракция электронов.

В 1924г Луи де-Бройль высказал гипотезу, согласно которой дуализм (двойственность) св-в присущи не только оптическим явлениям, но и к материи вообще. В частности с потоком электронов связан волновой процесс, который влияет на поведение электрона как частицу, заряд и масса которой локализованы в малом объеме пространства так, что ведет себя как точечный заряд. Д-Бройль показал, как можно определить длинну электронной волны по аналогии с длинной волны фотона.

Pф=m(индекс ф)c=hνc/c (c.2)=hν/c=h/λ; λ(инд.c)=h/P(индекс е)=

=h/m(инд. с) v(инд.с) (1). Длина волны, определяемая (1) называется дебройлевой длиной волны. Д-Бройль попробовал объяснить 1-й постулат Бора – постулат квантования. Согласно д-Бройлю, стационарными являются такие орбиты электрона, у которых вдоль периметра укладывается целое число волн д-Бройля. Т.е. вдоль орбиты устанавливается стоячая волна. 2πr = nλ(индекс с), 2π r = nh/mv;

mvr = nh/2π=nh(в).

Джемер и Дэвисон впервые обнаружили дифракцию электронов при рассеянии их на монохроматические никеля. Электроны, ускоренные разностью потенциалов U, вылетали из эл. пушки в виде узкого пучка, и фокусировались на клисталлической пластинке. Рассеяные электроны улавливались ловушкой цилиндра Фарадея, соединенного с чувствительным гальванометром.

Электроны отдавали свой заряд ловушке и устанавливалась зависимость J от √U. Сила тока J является мерой отраженных от пластины электронов, а √U – мера их скорости.

mv 2/2=eU; √U~v. Т.о. от кристалла отражаются лишь электроны определенных скоростей. Кристалл представляет собо пространственную дифракционную решетку, в которой источники вторичных волн, т.е. частицы в узлах кристаллической решетки, находятся на строго определенных расстояниях вдоль координатных осей. При прохождении через кристалл электро-магнитного излучения, частицы в узлах кристаллической решетки испускают вторичные волны, которые, налагаясь, образуют максимум и минимум дифракции. То, что от кристалла отражались лишь электроны определенных скоростей означало, что на кристалл падает излучение, представляющее собой волновой процесс, в его избирательное отражение есть результат дифракции.

24. Соотношение неопределенностей Гейзенберга.

Во всех макроскопических системах электрон ведет себя как частица, локализованная в малом объеме, обладающая определенной координатой и скоростью. При движении электрона в атоме проявляются его волновые свойства в большей степени, как и во всех микроскопических частицах, но волна не локализована в пространстве, а безгранична.

Пусть электроны движутся в направлении ОА со скоростью Vx и встречают узкую щель ВС с шириной а. DE – экран, на который будут попадать электроны. Т.к. электроны обладают волновыми свойствами, то при прохождении через узкую щель они дифрагируют, в результате чего электроны будут попадать не только в точки экрана DE, расположенные непосредственно за щелью, но распределяется по всему экрану. Представим, что электрон – классическая частица. Она характеризуется координатой и количеством движения. Можно охарактеризовать координату электрона в момент прохождения щели как координату щели. В таком определении координаты, однако, есть неточность, обусловленная шириной щели. Обозначим эту неопределенность через ∆x=a. После прохождения щели составляющая импульса Px≠0, т.к. вследствии дифракции изменяется скоростью. Составляющая импульса электрона не может быть определено точно, а лишь с некоторой погрешностью ∆Px≥Psinφ1=Pλ/a=hλ/λa=h/a; ∆Px*∆x≥h (1) – соотношение неопределенностей Гейзенберга.

25.Квантовое состояние. Уравнения Шредингера

В квантовой физике вводится комплекснозначная функция  , описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной копенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности). Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения   в частных физических задачах. Таким уравнением является уравнение Шрёдингера.

Пусть волновая функция задана в N-мерном пространстве, тогда в каждой точке с координатами  , в определенный момент времени t она будет иметь вид  . В таком случае уравнение Шрёдингера запишется в виде:

где   — постоянная Планка  — масса частицы,   — внешняя по отношению к частице потенциальная энергия в точке  ,   — оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]