
- •01.Термодинамические характеристики рабочего тела, параметры состояния. Первый и второй законы термодинамики. Изменение энтропии.
- •02.Основные понятия механики жидкости и газа плотность и сплошность среды, основные определения, виды течении. Понятие о полных параметрах состояния.
- •03.Общее и различия в течениях жидкостей и газов, молекулярно-кинетическое обоснование.
- •04.Кризис течения в сжимаемых жидкостях, запирание по расходу (см. Также вопрос 26).
- •05.Вязкость и внутреннее трение в жидкостях и газах. Зависимость вязкости от параметров состояния.
- •06.Механизмы перехода кинетической энергии в потенциальную энергию. Параметры торможения. Распределение параметров состояния по обводам обтекаемого тела.
- •Диссипация
- •Изоэнтропное торможение
- •07.Основные гидродинамические понятия, свойства элементарной струйки тока, виды расхода, плотность тока. Причины различия расхода через поперечное и живое сечения канала.
- •08.Характерные скорости потока. Эквивалентность изменения скорости и работы расширения-сжатия. Безразмерные скорости и связь между характерными скоростями в размерном и безразмерном ви
- •Безразмерные скорости
- •09.Газодинамические функции параметров торможения. Критические и полные параметры.
- •10.Нестационарное одномерное уравнение неразрывности в полных и в статических параметрах. Примеры проявления нестационарности (гидроудар, помпаж и пр.).
- •11.Газодинамическая форма уравнения неразрывности. Газодинамические функции расхода.
- •12.Анализ формулы расхода. Запирание каналов по расходу (см. Также уравнение Гюгонио). Воздействия, способные вызвать запирание каналов по расходу.
- •13.Силы, действующие в жидкости. Уравнения движения в форме Эйлера и Навье-Стокса.
- •14.Анализ и применение уравнений Эйлера - радиальное равновесие, универсальный закон изменения окружной составляющей скорости. Уравнение Эйлера в гидростатике - абсолютное и относител
- •15.Уравнение движения в форме Громеки-Лемба и интеграл Коши-Лагранжа. Энергетическая форма Крокко. Условия постоянства полной энтальпии.
- •16.Интеграл Бернулли, условия постоянства полной механической энергии. Анализ уравнения Бернулли.
- •17.Уравнение количеств движения (первое уравнение Эйлера) в общем виде. Тензор импульса и его компоненты. Неконсервативная форма для расчета силового взаимодействия потока и обтекаемы
- •18.Нестационарное и стационарное одномерное уравнение количеств движения. Уравнение количества движения для элементарной струйки.
- •19. Уравнение моментов количеств движения (второе уравнение Эйлера). Крутящий момент, мощность и работа одной ступени лопаточной машины; связь работы с силами, действующими на лопатки.
- •20. Энергетическая форма уравнения моментов количества движения, коэффициенты нагрузки (закрутки, напора), напорность ступени. Понятие о принципе работы турбомашин.
- •21. Общая форма одномерного стационарного уравнения энергии в тепловой и механической форме (обобщенное уравнение Бернулли).
- •23. Потери энергии в канале постоянного сечения (трубе) для капельных и сжимаемых жидкостей. Основные виды местных сопротивлений - конфузор и внезапное сжатие, диффузор и внезапное расширение.
- •24. Потери при повороте потока, вторичные течения.
- •27. Изоэнгропный и адиабатный потоки. Работа и кпд турбомашин, t-s диаграммы. Сжатие в компрессоре
- •Расширение в турбине
- •28. Связь сжимаемости со скоростью потока, вывод и анализ. Другие уравнения и формулы, подтверждающие или повторяющие этот анализ. Уравнение Гюгонио и анализ геометрического воздействия.
- •29. Уравнение обращения воздействий. Краткий анализ воздействий, виды дроссселирования течении (виды кризиса течения). Необходимость комплексных воздействий на поток в турбомашинах.
- •30. Тепловое воздействие, его анализ. Тепловой кризис, проявление в основных и форсажных камерах сгорания.
- •32. Истечение из косого среза, предел расширительной способности косого среза.
- •33. Законы сохранения в теории скачков уплотнения и ударных волн. Природа потерь в нормальных разрывах поля скоростей.
- •34. Расчет угла фронта косых скачков уплотнения.
- •35. Режимы истечения из сопла Лаваля. Диаграмма режимов истечения. Использование сопла Лаваля на режиме глубокого пере расширения для сверхзвуковых входных устройств.
04.Кризис течения в сжимаемых жидкостях, запирание по расходу (см. Также вопрос 26).
В газах при вызванном ускорением расширении статическое давление снижается по отношению к давлению торможения до критической величины, однозначно связанной с полным давлением. Эта связь зависит лишь от рода газа, определяемого показателем адиабаты:
При достижении критического давления расстояние между молекулами также становится критическим, а критическая скорость потока сравнивается с местной скоростью звука в данном сечении. При дальнейшем, сверхкритическом увеличении расстояния между молекулами закон их взаимодействия меняется: межмолекулярные силы начинают убывать обратно пропорционально квадрату расстояния. Данное явление приводит к тому, что эти силы оказываются не в состоянии противодействовать стремлению газа расширяться как в продольном, так и в поперечном к течению направлении. В связи с этим сверхкритическое ускорение газовых потоков требует, в отличие от докритических режимов или ускорения жидкостей, уже расширяющегося канала.
05.Вязкость и внутреннее трение в жидкостях и газах. Зависимость вязкости от параметров состояния.
Вязкость – свойство сплошных сред оказывать сопротивлению сдвигу двух слоев относительно друг друга. Сдвиг должен сопровождаться только изменением формы, но не объема.
Для твердых тел справедлив закон Гука, устанавливающий пропорциональную связь сдвиговых деформаций и касательных напряжений.
,
где τ – касательное напряжение сдвига;
Rτ – усилие сдвига;
F – площадь обтекания, на которую действует сила трения;
G – модуль упругости второго рода;
dγ – угловая деформация при сдвиге.
Связь с поперечным градиентом скорости опытным путем установил Ньютон в форме закона о молекулярном трении в жидкостях и газах:
где μ – коэффициент пропорциональности, называемый динамическим коэффициентом вязкости;
n – нормаль к обтекаемой поверхности.
Зависимость напряжений трения от скорости деформации для легкоподвижных сред:
Скорость деформации может по-разному влиять на поведение обладающих высокой вязкостью жидкостей или твердых аморфных тел. Так, стекло, смолы, битум при высокой ударной скорости деформации могут испытывать хрупкое разрушение, но текут при длительном медленном силовом воздействии. Аналогично могут вести себя и капельные жидкости.
06.Механизмы перехода кинетической энергии в потенциальную энергию. Параметры торможения. Распределение параметров состояния по обводам обтекаемого тела.
Диссипация
Пограничный слой на стенке является двумерным, поскольку скорость потока меняется и по нормали к поверхности, и вдоль поверхности. Поток вне пограничного слоя, называемый основным (невозмущенным) или ядром потока, практически одномерен, т.к. скорость среды может меняться только в узком слое вдоль потока под влиянием трения у поверхности. Приходящийся на единицу массы секундные составляющие работы вязкостных сил для двумерного потока будут равны:
Составляющая
скорости
,
вызванная выделением тепла трения, в
силу ее малости, а также производные
от нее, опущены. Непосредственно на
поверхности скорость равна нулю.
Следовательно работа по переносу
количества движения на стенке равна
нулю и вся работа сил вязкости полностью
является работой тепловыделения
Итак,
на обтекаемой стенке в сплошных течениях
всегда имеет место полная
диссипация кинетической энергии.
Она приводит к повышению по мере
приближения к стенке только внутренней
энергии газа
,
потенциальная энергия давления
остается неизменной. Диссипативный
процесс необратим, поэтому израсходованная
на тепло кинтеическая энергия не может
восстановиться в виде механической,
какой является энергия давления. В
продольном по отношению к обтекаемой
поверхности направлении диссипация в
силу своей необратимости приводит к
уменьшению потенциальной энергии
давления, т.к. эта энергия расходуется
на восполнение потерь кинетической
энергии вдоль пограничного слоя.
Статическое давление и плотность вдоль
пограничного слоя уменьшаются. Это
справедливо только для прямолинейных
каналов постоянного поперечного сечения
с дозвуковым потоком.