
- •Основные этапы в развитии науки.
- •Характерные черты науки и ее отличие от других отраслей культуры .
- •Предмет естествознания, отличие естествознания от других отраслей науки.
- •Структура естественнонаучного познания .
- •Всеобщие, общенаучные и конкретно–научные методы познания .
- •Специфика научных революций и научные революции в хх в .
- •Классификация естественных наук .
- •Теория познания и современное естествознание .
- •Основные методологические концепции развития современного естествознания.
- •Современная научная картина мира.
- •Перспективы естественнонаучного познания.
- •Концепции сциентизма и антисциентизма.
- •Место и роль науки в общественной жизни современного человека.
- •Значение системного, структурного и функционального подходов в современном естествознании.
- •Донаучное, научное и телеологическое понимание целесообразности.
- •Наука как эволюционный механизм.
- •Источники противоречий естественнонаучной и гуманитарной культур и их взаимный антагонизм в истории человечества.
- •Проблема «двух культур» и приоритет духовной гуманитарной культуры в настоящее время.
- •Неолитическая революция в истории человечества.
- •Формирование первых научных знаний – астрономии, геометрии, счета, письменности.
- •Научная революция хvii – хviii вв. Наука в хiх веке. Научно – техническая революция хх века.
- •Основные стадии познания природы: натурфилософская, аналитическая, синтетическая, интегрально – дифференциальная стадии.
- •Пути синтеза и интеграции наук.
- •Основные подсистемы наук.
- •Научная методология и ее тесная взаимосвязь с философией до начала хх века. Разработка собственных методологических средств наукой хх века.
- •Общелогические и научные методы познания.
- •Принципы научного познания
- •Общие методы познания
- •Первая научная революция. Аристотель.
- •Вторая научная революция. Ньютон.
- •Третья научная революция. Эйнштейн.
- •Особенности квантовой механики.
- •Необычные явления, мысленные эксперименты и парадоксы квантовой механики
- •Разделы квантовой механики
- •Комментарии
- •Значение синергетики для современной науки.
- •Предмет, методы и школы синергетики
- •Синергетический подход в естествознании
- •Происхождение, развитие и виды физической материи.
- •Основные виды материи
- •Вещество
- •Элементарные частицы и поля
- •Материя в общей теории относительности
- •Современные представления о пространстве и времени.
- •Кибернетика, ее основные понятия и результаты.
- •Структурные уровни организации материи и их определение.
- •Роль вероятностных методов в классической физике и квантовой механике.
- •Общенаучное значение понятия «энтропия».
- •Проблемы соотношения вещества и поля, материи и энергии.
- •Роль симметрии и асимметрии в научном познании.
- •Проблема детерминизма и индетерминизма в современном естествознании.
- •Основные проблемы синтетической теории эволюции.
- •Построение современных теорий на основании априорного принципа – или эйнштейновского общего формального принципа теории.
- •История развития системных взглядов. Предшественники теории систем.
- •Ньютоновский взгляд на устройство мира. Механистическая концепция Вселенной.
- •Субстанциальные концепции пространства и времени. Пространство и время в Ньютоновской механике.
- •Жесткий лапласовский детерминизм и вероятностный детерминизм.
- •Физический вакуум и его свойства.
- •Атомистическая концепция строения материи
- •Корпускулярно – волновой дуализм материи.
- •Квантово – механическая концепция на современном этапе .
- •Развитие взглядов на пространство и время в доньютоновский период.
- •Ньютоновская концепция пространства и времени.
- •Характеристика теории относительности.
- •Современные взгляды на пространство и время.
- •77.Организация и самоорганизация в живой природе.
- •78.Влияние космического излучения и солнечной энергии на живые тела и общественные процессы.
- •79.Бихевиоризм и проблема психогенеза.
- •80.Система химии. Химия как наука и производство.
- •81.Явления самосовершенствования катализаторов в ходе реакции.
- •82.Происхождение жизни на Земле.
- •83.Додарвиновский период развития эволюционных учений.
- •84.Эволюционное учение Дарвина.
- •85.Современное эволюционное учение.
- •86.Биологическое разнообразие – как результат взаимодействия двух процессов – видообразования и вымирания.
- •87.Биологическое разнообразие как индикатор воздействий.
- •88.Эволюция человека.
- •89.Морфологическая уникальность человеческого организма.
- •90.История человечества и экологические кризисы.
Специфика научных революций и научные революции в хх в .
Научная революция XVII в. связана с революцией в естествознании. Развитие производительных сил требовало создания новых машин, внедрения химических процессов, законов механики, конструирования точных приборов для астрономических наблюдений.
Научная революция прошла несколько этапов, и ее становление заняло полтора столетия. Ее начало положено Н.Коперником и его последователями Бруно, Галилеем, Кеплером. В 1543 г. польский ученый Н.Коперник (1473—1543) опубликовал книгу «Об обращениях небесных сфер», в которой утвердил представление о том, что Земля так же, как и другие планеты Солнечной системы, обращается вокруг Солнца, являющегося центральным телом Солнечной системы. Коперник установил, что Земля не является исключительным небесным телом, чем был нанесен удар по антропоцентризм и религиозным легендам, в соответствии с которыми Земля якобы занимает центральное положение во Вселенной. Была отвергнута геоцентрическая система Птолемея.
Галилею принадлежат крупнейшие достижения в области физики и разработки самой фундаментальной проблемы — движения, огромны его достижения в астрономии: обоснование и утверждение гелиоцентрической системы, открытие четырех самых крупных спутников Юпитера из 13 известных в настоящее время; открытие фаз Венеры, необычайного вида планеты Сатурн, создаваемого, как известно теперь, кольцами, представляющими совокупность твердых тел; огромного количества звезд, не видимых невооруженным взглядом. Галилей добился успеха в научных достижениях в значительной мере потому, что в качестве исходного пункта познания природы признавал наблюдения, опыт.
Современный мир характеризуется как период бурного развития научно-технических аспектов жизнедеятельности человека, которые естественно находят свое применение в экономической сфере, снижая физическую нагрузку на человека. Однако очевидные преимущества использования научно-технических достижений имеют и обратную сторону, которая в курсе культурологии фиксируется как проблема социокультурных последствий научно-технической революции.
Ньютон создал основы механики, открыл закон всемирного тяготения и разработал на его основе теорию движения небесных тел. Это научное открытие прославило Ньютона навечно. Ему принадлежат такие достижения в области, механики, как введение понятий силы, энерции, формулировка трех законов механики; в области оптики — открытие рефракции, дисперсии, интерференции, дифракции света; в области математики — алгебра, геометрия, интерполяция, дифференциальное и интегральное исчисление..
В XVIII веке революционные открытия были совершены в астрономии И.Кантом (172-4—1804) и П.Латасом (1749—1827), а также в химии — ее начало связано с именем А .Лавуазье (1743—1794). К этому периоду относится деятельность М.В. Ломоносова (1711—1765), предвосхитившего многое из последующего развития естествознания.
В XIX веке в науке происходили непрерывные революционные перевороты во всех отраслях естествознания.
Опора науки Нового времени на эксперимент, развитие механики заложили фундамент для установления связи науки с производством. В то же время к началу XIX в. накопленный наукой опыт, материал в отдельных областях уже не укладывался в рамки механистического объяснения природы и общества. Потребовался новый виток научных знаний и более глубокий и широкий синтез, объединяющий результаты отдельных наук. В этот исторический период науку прославили Ю.Р. Майер (1814—1878), Дж. Джоулъ (1818—1889), Г. Гелъмголъц (1821—1894), открывшие законы сохранения и превращения энергии, что обеспечило единую основу для всех разделов физики и химии. Огромное значение в познании мира имело создание Т.Шванном (1810—1882) и М. Шлейденом (1804—1881) клеточной теории, показавшей единообразную структуру всех живых организмов. Ч. Дарвин (1809—1882), создавший эволюционное учение в биологии, внедрил идею развития в естествознание. Благодаря периодической системе элементов, открытой гениальным русским ученым Д.И. Менделеевым (1834—1907), была доказана внутренняя связь между всеми известными видами вещества.
Таким образом, к рубежу XIX—XX вв. произошли крупные изменения в основах научного мышления, механистическое мировоззрение исчерпало себя, что привело классическую науку Нового времени к кризису. Этому способствовали помимо названных выше, открытие электрона и радиоактивности. В результате разрешения кризиса произошла новая научная революция, начавшаяся в физике и охватившая все основные отрасли науки, Она связана прежде всего с именами М. Планка (1858—1947) и А.Эйнштейна (1879—1955), Открытие электрона, радия, превращения химических элементов, создание теории относительности и квантовой теории ознаменовали прорыв в область микромира и больших скоростей. Успехи физики оказали влияние на химию. Квантовая теория, объяснив природу химических связей, открыла перед наукой и производством широкие возможности химического преобразования вещества; началось проникновение в механизм наследственности, получила развитие генетика, сформировалась хромосомная теория.
К середине XX века на одно из первых мест в естествознании выдвинулась биология, где совершены такие фундаментальные открытия, как установление молекулярной структуры ДНК Ф. Криком (род. 1916) и Дж.Уотсоном (род. 1928), открытие генетического кода.