- •Основные этапы в развитии науки.
- •Характерные черты науки и ее отличие от других отраслей культуры .
- •Предмет естествознания, отличие естествознания от других отраслей науки.
- •Структура естественнонаучного познания .
- •Всеобщие, общенаучные и конкретно–научные методы познания .
- •Специфика научных революций и научные революции в хх в .
- •Классификация естественных наук .
- •Теория познания и современное естествознание .
- •Основные методологические концепции развития современного естествознания.
- •Современная научная картина мира.
- •Перспективы естественнонаучного познания.
- •Концепции сциентизма и антисциентизма.
- •Место и роль науки в общественной жизни современного человека.
- •Значение системного, структурного и функционального подходов в современном естествознании.
- •Донаучное, научное и телеологическое понимание целесообразности.
- •Наука как эволюционный механизм.
- •Источники противоречий естественнонаучной и гуманитарной культур и их взаимный антагонизм в истории человечества.
- •Проблема «двух культур» и приоритет духовной гуманитарной культуры в настоящее время.
- •Неолитическая революция в истории человечества.
- •Формирование первых научных знаний – астрономии, геометрии, счета, письменности.
- •Научная революция хvii – хviii вв. Наука в хiх веке. Научно – техническая революция хх века.
- •Основные стадии познания природы: натурфилософская, аналитическая, синтетическая, интегрально – дифференциальная стадии.
- •Пути синтеза и интеграции наук.
- •Основные подсистемы наук.
- •Научная методология и ее тесная взаимосвязь с философией до начала хх века. Разработка собственных методологических средств наукой хх века.
- •Общелогические и научные методы познания.
- •Принципы научного познания
- •Общие методы познания
- •Первая научная революция. Аристотель.
- •Вторая научная революция. Ньютон.
- •Третья научная революция. Эйнштейн.
- •Особенности квантовой механики.
- •Необычные явления, мысленные эксперименты и парадоксы квантовой механики
- •Разделы квантовой механики
- •Комментарии
- •Значение синергетики для современной науки.
- •Предмет, методы и школы синергетики
- •Синергетический подход в естествознании
- •Происхождение, развитие и виды физической материи.
- •Основные виды материи
- •Вещество
- •Элементарные частицы и поля
- •Материя в общей теории относительности
- •Современные представления о пространстве и времени.
- •Кибернетика, ее основные понятия и результаты.
- •Структурные уровни организации материи и их определение.
- •Роль вероятностных методов в классической физике и квантовой механике.
- •Общенаучное значение понятия «энтропия».
- •Проблемы соотношения вещества и поля, материи и энергии.
- •Роль симметрии и асимметрии в научном познании.
- •Проблема детерминизма и индетерминизма в современном естествознании.
- •Основные проблемы синтетической теории эволюции.
- •Построение современных теорий на основании априорного принципа – или эйнштейновского общего формального принципа теории.
- •История развития системных взглядов. Предшественники теории систем.
- •Ньютоновский взгляд на устройство мира. Механистическая концепция Вселенной.
- •Субстанциальные концепции пространства и времени. Пространство и время в Ньютоновской механике.
- •Жесткий лапласовский детерминизм и вероятностный детерминизм.
- •Физический вакуум и его свойства.
- •Атомистическая концепция строения материи
- •Корпускулярно – волновой дуализм материи.
- •Квантово – механическая концепция на современном этапе .
- •Развитие взглядов на пространство и время в доньютоновский период.
- •Ньютоновская концепция пространства и времени.
- •Характеристика теории относительности.
- •Современные взгляды на пространство и время.
- •77.Организация и самоорганизация в живой природе.
- •78.Влияние космического излучения и солнечной энергии на живые тела и общественные процессы.
- •79.Бихевиоризм и проблема психогенеза.
- •80.Система химии. Химия как наука и производство.
- •81.Явления самосовершенствования катализаторов в ходе реакции.
- •82.Происхождение жизни на Земле.
- •83.Додарвиновский период развития эволюционных учений.
- •84.Эволюционное учение Дарвина.
- •85.Современное эволюционное учение.
- •86.Биологическое разнообразие – как результат взаимодействия двух процессов – видообразования и вымирания.
- •87.Биологическое разнообразие как индикатор воздействий.
- •88.Эволюция человека.
- •89.Морфологическая уникальность человеческого организма.
- •90.История человечества и экологические кризисы.
Пути синтеза и интеграции наук.
В организме АТФ синтезируется из АДФ, используя энергию окисляющихся веществ:
АДФ + H3PO4 + энергия → АТФ + H2O.
Фосфорилирование АДФ возможно двумя способами: субстратное фосфорилирование и окислительное фосфорилирование. Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АТФ не требует участия мембранных ферментов, оно происходит в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.
Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.
В организме АТФ является одним из самых часто обновляемых веществ, так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.
Интеграция науки - это процесс обобщения, объединения разрозненных научных фактов, концепций, теорий и учений об одном и том же объекте исследования в целостную, с определенных методологических позиций упорядоченную систему знаний. Это "становление системы целостностью образует необходимый момент ее, системы, процесса, ее развития" (К. Маркс). Преждевременная и неадекватная интеграция сопровождается эклектикой и может это развитие притормозить, ибо "научные теории становятся системами только в конце их разработки.
Основные подсистемы наук.
В классификации научных дисциплин традиционно выделяются три основных сферы научного знания (подсистемы науки) – естествознание, социально-гуманитарные (общественные) и технические науки, различающиеся по своим предметам и методам. Каждая из указанных подсистем, в свою очередь, образует систему разнообразным способом взаимосвязанных научных дисциплин, что делает проблему их детальной классификации крайне сложной.
Научная методология и ее тесная взаимосвязь с философией до начала хх века. Разработка собственных методологических средств наукой хх века.
Методология, в прикладном смысле, — это система (комплекс, взаимосвязанная совокупность) принципов и подходов исследовательской деятельности, на которые опирается исследователь (ученый) в ходе получения и разработки знаний в рамках конкретной дисциплины: физике, химии, биологии, информатики и других разделах науки
Методология науки, в традиционном понимании, — это учение о методах и процедурах научной деятельности, а также раздел общей теории познания, в особенности теории научного познания (эпистемологии) и философии науки.
Наука всегда была тесно связана с философией. Выдающиеся ученые всех времен внесли огромный вклад в ее развитие. Пифагор, Аристотель, Н.Коперник, Р.Декарт, Г.Галилей, И.Ньютон, Г.В.Лейбниц, А.Смит, В.Гумбольдт, Ч.Дарвин, Д.И.Менделеев, К.Маркс, Д.Гильберт, Л.Э-Я.Брауэр, А.Пуанкаре, К.Гедель, А.Эйнштейн, Н.Бор, В.И.Вернадский, Н.Винер, И.Пригожин, А.Дж.Тойнби, Дж.М.Кейнс, П.Сорокин, Ф.де Соссюр, Л.С.Выготский, З.Фрейд, М.М.Бахтин не только имели выдающиеся достижения, определившие главные направления развития науки, но и существенным образом повлияли на стиль мышления своего времени, его мировоззрение.
Философское осмысление достижений науки начало приобретать особенно большое культурное значение с XVII в., когда наука стала превращаться во все более значительное общественное явление. Но вплоть до второй половины XIX в. их обсуждение не было достаточно систематичным. Именно в то время философские и методологические проблемы науки превращаются в самостоятельную область исследований.
Засилье эмпиризма в естествознании в конце XVIII и начале XIX в. привело к возникновению иллюзорных надежд на то, что функции теоретического обобщения в науке могут взять на себя философы.
Однако их реализация, особенно в грандиозных натурфилософских построениях Ф.В.И.Шейнина и Г.В.Ф.Гегеля, вызвала у ученых не только явно выраженный скепсис, но даже и неприязнь.
«Мало удивительно, - писал К.Гаусс к Г.Шумахеру, - что Вы не доверяете путанице в понятиях и определениях философов профессионалов. Если Вы посмотрите хотя бы на современных философов, у Вас волосы встанут дыбом от их определений».
Г.Гельмгольц отмечал, что в первой половине XIX в. «между философией и естественными науками под влиянием шеллинго-гегелевской философии тождества сложились малоотрадные отношения». Он считал, что такого рода философия для естествоиспытателей абсолютно бесполезна, поскольку она бессмысленна.
«Полагают, - писал известный историк философии К.Фишер.- что в то время в естествознании происходил шабаш ведьм и Шеллинг был блуждающим огоньком, за которым бежали многие; теперь этот сон Вальпургиевой ночи рассеялся и не оставил ничего, кроме обыкновенных последствий пирушки».
Вместе с тем наука постепенно стала преодолевать дефицит теоретических идей. Буквально во всех ее областях, и, прежде всего, в математике и естествознании стали появляться плодотворные научные теории, значительно расширяющие горизонты науки, происходило существенное обогащение средств научного познания, его понятийного аппарата.
Так, например, в математике сложились основы математического анализа и теории вероятностей, были получены фундаментальные результаты в алгебре, созданы неевклидовы геометрии.
В биологии было развито учение о клеточном строении живого вещества, построена теория эволюции видов, развита концепция происхождения человека от обезьяны, началось широкое использование физико-химических методов познания процессов жизнедеятельности.
Особенно велики были успехи физических наук. Во второй половине XIX в. здесь наряду с механикой, ранее монополизировавшей теоретическую физику, появились электродинамика, термодинамика, молекулярно - кинетическая теория газов, а затем и статистическая физика.
В арсенал активно используемых понятий вошли понятия поля, эфира, атома, энтропии.
Ученые стали применять в познании физических явлений методы феноменологического описания, математической аналогии, моделирования.
Наряду с методами математического анализа и дифференциальных уравнений все большим успехом стали пользоваться методы теории вероятностей и математической статистики. На страницах журналов постоянно обсуждались различные теоретические построения, и никого уже не удивляло ни их обилие, ни кратковременность жизни многих из них.
Неудивительно, что сами ученые, и особенно физики, стремясь понять происходящее в их науке, все чаще обращаются к философии. Интерес к ней, угасший в результате крушения претензий натурфилософии, во второй половине XIX в. возрождается с новой силой.
Внимание ученых вновь стали привлекать проблемы философии и методологии науки.
- Каково содержание понятий числа, функции, пространства, времени, закона, причинности, массы, силы, энергии, жизни, вида и др.?
- Как сочетаются в научном познании анализ и синтез, индукция и дедукция, теория и опыт?
- Что обусловливает описательную, объяснительную и предсказательную функции теории?
- Какова роль эмпирических и теоретических гипотез?
- Каким образом происходят научные открытия, и в чем заключается роль интуиции в получении нового знания?
- Как следует истолковывать понятие теории?
- Что обеспечивает науке возможность познавать истину и что в научном познании представляет собой таковую?
Эти и им подобные вопросы активно обсуждаются учеными в публичных докладах и диспутах, статьях и специальных монографиях. Все они были рождены прогрессом науки, и нужды ее требовали их скорейшего разрешения.
