
- •6. Язык как способ представления информации. Естественные языки. Формальные языки.
- •8. Количество информации. Содержательный подход. Алфавитный подход.
- •9. Кодирование информации.
- •10. Единицы измерения информации.
- •11. Системы счисления. Непозиционные системы счисления. Позиционные системы счисления.
- •12. Системы счисления, используемые в компьютере. Двоичная система счисления.
- •Достоинства двоичной системы счисления
- •Недостатки двоичной системы счисления
- •Перевод чисел из различных систем счисления в десятичную
- •Перевод чисел из десятичной системы счисления в другие
- •Примеры перевода дробных чисел из десятичной системы в другие.
- •15. Двоичная арифметика. Сложение. Вычитание меньшего числа из большего в двоич-ной системе. Вычитание большего числа из меньшего в двоичной системе. Умножение. Деление.
- •16. Двоичное кодирование различных форм представления информации. Двоичное ко-дирование текстовой информации. Двоичное кодирование графической информации.
- •17. Основные понятия и операции формальной логики. Таблица истинности логических выражений. Основные логические операции.
- •Алгоритм построения таблицы истинности сложного высказывания
- •20. Основные логические элементы компьютера. Логические вентили и, или и не. Полусумматор, сумматор, каскад сумматоров. Триггер.
- •21. Основные устройства компьютера. Процессор. Оперативная память. Долговременная память. Устройства ввода информации. Устройства вывода информации. Основные компоненты архитектуры эвм:
- •Внешняя память компьютера.
- •Различные виды носителей информации, их характеристики (информационная емкость, быстродействие и др.)
- •22. Основные функции процессора. Характеристики процессора.
- •23. Функциональная организация компьютера (магистрально-модульный принцип построения компьютера)
- •24. Программное управление работой компьютера и программное обеспечение.
- •25. Операционные системы.
- •26. Языки программирования. Языки программирования низкого и высокого уровней.
- •Языки программирования низкого уровня
- •Преимущества
- •Недостатки
- •27. Транслятор. Различие между компилятором и интерпретатором.
- •28. Характеристики языков высокого уровня.
- •30. Информационная технология решения задачи с помощью компьютера: основная технологическая цепочка.
- •31. Инсталляция программ.
- •32. Файлы и каталоги. Файлы и файловые системы. Правила именования файлов. Каталоги. Операции над файлами и каталогами.
- •33. Основные носители информации и их характеристики. Магнитные носители. Лазерные диски. Ёмкость и скорость обмена информацией.
- •34. Работа с носителями информации. Физическая структура диска. Логическая струк-тура. Форматирование. Фрагментация.
- •35. Ввод и вывод данных. Устройства ввода информации. Устройства вывода информации.
21. Основные устройства компьютера. Процессор. Оперативная память. Долговременная память. Устройства ввода информации. Устройства вывода информации. Основные компоненты архитектуры эвм:
процессор,
внутренняя (основная) память,
внешняя память,
устройства ввода, устройства вывода.
Процессор. Процессор может обрабатывать различные виды информации: числовую, текстовую, графическую, видео и звуковую. Процессор является электронным устройством, поэтому различные виды информации должны в нем обрабатываться в форме последовательностей электрических импульсов.
Такие последовательности электрических импульсов можно записать в виде последовательностей нулей и единиц (есть импульс — единица, нет импульса — нуль), которые называются машинным языком.
Устройства ввода и вывода информации. Человек не воспринимает электрические импульсы и очень плохо понимает информацию, представленную в форме последовательностей нулей и единиц, следовательно, в составе компьютера требуются специальные устройства ввода и вывода информации.
Устройства ввода «переводят» информацию с языка человека на машинный язык компьютера, а устройства вывода, наоборот, делают информацию, представленную на машинном языке, доступной для человеческого восприятия.
Устройства ввода информации. Ввод числовой и текстовой информации осуществляется с помощью клавиатуры. Для ввода графической информации или работы с графическим интерфейсом программ чаще всего применяют манипуляторы типа мышь (для настольных персональных компьютеров) и трекбол или тачпад (для портативных компьютеров).
Если мы хотим ввести в компьютер фотографию или рисунок, то используем специальное устройство — сканер. В настоящее время все большее распространение получают цифровые камеры (фотоаппараты и видеокамеры), которые формируют изображения уже в компьютерном формате.
Для ввода звуковой информации предназначен микрофон, подключенный ко входу специальной звуковой платы, установленной в компьютере.
Управлять компьютерными играми удобнее посредством специальных устройств — игровых манипуляторов (джойстиков).
Устройства вывода информации. Наиболее универсальным устройством вывода является монитор, на экране которого высвечивается числовая, текстовая, графическая и видеоинформация.
Для сохранения информации в виде «твердой копии» на бумаге служит принтер, а для вывода на бумагу сложных чертежей, рисунков и схем большого формата — плоттер (графопостроитель).
Вывод звуковой информации осуществляется с помощью акустических колонок или наушников, подключенных к выходу звуковой платы.
Внешняя память компьютера.
Различные виды носителей информации, их характеристики (информационная емкость, быстродействие и др.)
Основной функцией внешней памяти компьютера является способность долговременно хранить большой объем информации (программы, документы, аудио- и видеоклипы и т. д.). Устройство, которое обеспечивает запись/считывание информации, называется накопителем или дисководом, а хранится информация на носителях (например, дискетах).
В накопителях на гибких магнитных дисках (НГМД или дискетах) и накопителях на жестких магнитных дисках (НЖМД или винчестерах), в основу записи, хранения и считывания информации положен магнитный принцип, а в лазерных дисководах — оптический принцип.
Гибкие магнитные диски. Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Дискета вставляется в дисковод, вращающий диск с постоянной угловой скоростью. Магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска, на которую и записывается (или считывается) информация.
В целях сохранения информации гибкие магнитные диски следует предохранять от воздействия сильных магнитных полей и нагревания, так как это может привести к размагничиванию носителя и потере информации.
Жесткие магнитные диски. Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с высокой угловой скоростью.
За счет множества дорожек на каждой стороне дисков и большого количества дисков информационная емкость жестких дисков может в десятки тысяч раз превышать информационную емкость дискет и достигать 160 Гбайт-
Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов и резких изменений пространственной ориентации в процессе работы.
Лазерные дисководы и диски. Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD — Compact Disk, компакт диск) и DVD (DVD — Digital Video Disk, цифровой видеодиск) информация записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки и приобретает значения 0 или 1.
Внутренняя память ПК включает в себя оперативное запоминающее устройство (ОЗУ) и постоянное запоминающее устройство (ПЗУ).
ОЗУ—быстрая, полупроводниковая, энергозависимая память. В ОЗУ хранятся исполняемая в данный момент программа и данные, с которыми она непосредственно работает. Это значит, что когда вы запускаете какую-либо компьютерную программу, находящуюся на диске, она копируется в оперативную память, после чего процессор начинает выполнять команды, изложенные в этой программе. Часть ОЗУ, называемая “видеопамять”, содержит данные, соответствующие текущему изображению на экране. При отключении питания содержимое ОЗУ стирается. Быстродействие (скорость работы) компьютера напрямую зависит от величины его ОЗУ, которое в современных
компьютерах может доходить до 4 Гбайт. В первых моделях компьютеров оперативная память составляла не более 1 Мбайт. Современные прикладные программы часто требуют для своего выполнения не менее 4 Мбайт ОЗУ; в противном случае они просто не запускаются.
ОЗУ — это память, используемая как для чтения, так и для записи информации. При отключении электропитания информация в ОЗУ исчезает (энергозависимость).
ПЗУ — быстрая, энергонезависимая память. ПЗУ — это память, предназначенная только для чтения. Информация заносится в нее один раз (обычно в заводских условиях) и сохраняется постоянно (при включенном и выключенном компьютере). В ПЗУ хранится информация, присутствие которой постоянно необходимо в компьютере.
В ПЗУ находятся:
тестовые программы, проверяющие при каждом включении компьютера правильность работы его блоков;
программы для управления основными периферийными устройствами —дисководом, монитором, клавиатурой;
информация о том, где на диске расположена операционная система.
Основная память состоит из регистров. Регистр — это устройство для временного запоминания информации в оцифрованной (двоичной) форме. Запоминающим элементом в регистре является триггер — устройство, которое может находиться в одном из двух состояний, одно из которых соответствует запоминанию двоичного нуля, другое — запоминанию двоичной единицы. Триггер представляет собой крошечный конденсатор-батарейку, которую можно заряжать множество раз. Если такой конденсатор заряжен — он как бы запомнил значение “1”, если заряд отсутствует — значение “О”. Регистр содержит несколько связанных друг с другом триггеров. Число триггеров в регистре называется разрядностью компьютера. Производительность компьютера напрямую связана с разрядностью, которая бывает равной 8, 16, 32 и 64.