
- •21. Дифракция света на одной щели.
- •22. Дифракционная решетка. Дифракционный спектр. Дисперсия и разрешающая сила дифракционной решетки.
- •23. Взаимодействие света с веществом. Дисперсия и поглощение света. Теория Лоренца. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.
- •24. Естественный и поляриз. Свет. Поляризаторы. Степень поляризации. Закон Малюса.
- •25. Поляризация света при отражении и преломлении. Закон Брюстера. Двойное лучепреломление. Анизотропия кристаллов.
- •26. Искусственное двойное лучепреломление. Вращение плоскости поляризации.
- •27. Эффект Доплера для световых волн. Поперечный эффект Доплера.
- •28. Тепловое излучение. Свойства равновесного теплового излучения. Абсолютно черное тело. Распределение энергии в спектре ачт.
- •29. Законы Кирхгофа, Стефана-Больцмана, закон смещения Вина. Формула Планка.
- •30. Оптическая пирометрия. Радиационная, цветовая и яркостная температуры.
- •31. Постулаты специальной теории относительности. Преобразования Лоренца.
- •32. Следствия из преобразований Лоренца: одновременность событий в разных системах отсчета; длительность событий в разных системах отсчета; длина тел в разных системах отсчета.
- •2. Длительность событий в разных системах отсчета.
- •33. Релятивистский закон сложения скоростей.
- •34. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
23. Взаимодействие света с веществом. Дисперсия и поглощение света. Теория Лоренца. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.
Дисперсией света называют явление зависимости абсолютного показателя преломления вещества n от частоты света ω (или длины волны λ): n = f(λ).
Дисперсия света называется нормальной в случае, если показатель преломления монотонно возрастает с увеличением частоты (убывает с увеличением длины волны); в противном случае дисперсия называется аномальной. Величина D = dn/dλ называется дисперсией вещества и характеризует скорость изменения показателя преломления при изменении длины волны.
Пусть монохроматический пучок света падает на прозрачную призму с преломляющим углом θ и показателем преломления n под углом α1. Поскольку n = f(λ), то лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т.е. пучок белого света, падающий на призму, за призмой разлагается в спектр, что и наблюдалось впервые Ньютоном. Значит, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав. В призме же для всех прозрачных веществ с нормальной дисперсией показатель преломления n с увеличением длины волны уменьшается, поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.На явлении нормальной дисперсии основано действие призменных спектрометров, широко используемых в спектральном анализе. Это объясняется тем, что изготовить призму значительно проще, чем дифракционную решетку. Призменные спектрометры имеют также большую светосилу.
Электронная теория дисперсии света.
Теория Лоренца, в которой дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.
Дисперсия света является следствием зависимости ε от частоты ω световых волн. Диэлектрическая проницаемость вещества равна ε = 1 + χ = 1 + Р/(ε0Е) (где χ – диэлектрическая восприимчивость среды, ε0 – электрическая постоянная, Р – мгновенное значение поляризованности (наведенный дипольный момент единицы объема диэлектрика в поле волны напряженностью Е)). Тогда n2 = 1 + Р/(ε0Е). Для видимого света частота ω~1015 Гц столь велика, что существенны лишь вынужденные колебания внешних (наиболее слабо связанных) электронов атомов, молекул или ионов под действием электрической составляющей поля волны, а ориентационной поляризации молекул при такой частоте не будет (оптические электроны).
Для простоты рассмотрим колебания одного оптического электрона в молекуле. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, (где е – заряд электрона, х – смещение электрона из положения равновесия под действием электрического поля световой волны). Пусть n0 – концентрация атомов в диэлектрике, тогда Р = р n0 = n0 е х. Подставив n2 = 1 + n0 е х /(ε0Е), т.е. задача сводится к определению смещения х электрона под действием внешнего электрического поля Е = Е0cos ωt.
Уравнение вынужденных колебаний электрона для простейшего случая d2x/dt2 +ω02 x = (F0/m)cos ωt = (e/ m) E0cos ωt,
где (F0 = еE0 –амплитудное значение силы, действующей на электрон со стороны поля волны, ω0 = √k/m – собственная частота колебаний электрона, m – масса электрона).
Решением является Х = Аcos ωt, где А = еЕ0/m(ω02 – ω2)
Подставляя, получим n2 = 1 + n0e2/ε0m(ω02 – ω2).
Видно, что показатель преломления вещества зависит от частоты ω внешнего поля, и что в области частот от ω = 0 до ω = ω0 значение n2 больше 1 и возрастает с увеличением частоты ω (нормальная дисперсия).
Поглощением света – называется уменьшение энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии.
Формальное описание поглощения света веществом было дано Бугером, который установил связь между интенсивностью света, прошедшего через конечный слой поглощающего вещества, и интенсивностью падающего на него света Ilλ = I0λe-K l (I0λ – интенсивность светового излучения с длиной волны λ, падающего на поглощающий слой; Ilλ - интенсивность светового излучения, прошедшего поглощающий слой вещества толщиной l; Кλ – коэффициент поглощения, зависящий от λ, т.е. Кλ = f(λ)).
Если поглотителем является вещество в растворе, то поглощение света тем больше, чем больше молекул растворенного вещества свет встречает на своем пути. Поэтому коэффициент поглощения зависит от концентрации С. В случае слабых растворов, когда взаимодействием молекул растворенного вещества можно пренебречь, коэффициент поглощения пропорционален С: Кλ = cλС (где cλ – коэффициент пропорциональности, который также зависит от λ). Учитывая это, можно закон Бугера переписать в виде:
Iλ = I0λe-c Cl (cλ – показатель поглощения света на единицу концентрации вещества. Если концентрация растворенного вещества выражается в [моль/литр], то cλ называют молярным коэффициентом поглощения).Соотношение носит название закона Бугера-Ламберта-Бера.