
- •I.Оформление чертежей.
- •II. Геометрические построения
- •76. Виды аксонометрических проекций
- •77. Прямоугольная изометрия § 77. Прямоугольная изометрия
- •78. Прямоугольная диметрия § 78. Прямоугольная диметрия
- •1.Метод проекций.
- •2.Комплексный чертеж точки
- •3.Комплексный чертеж прямой линии
- •4.Деление отрезка в заданном отношении.
- •5.Способы задания плоскости
- •6.Прямые Положение прямой относительно плоскостей проекций. Следы прямой.
- •7.Плосокости
- •Плоскости частного положения
- •Плоскости уровня
- •8.Принадлежность Прямая и точка в плоскости.
- •Проведение любой прямой в плоскости.
- •П остроение в плоскости некоторой точки.
- •П остроение недостающей проекции точки.
- •П роверка принадлежности точки плоскости.
- •9.Определение натуральной величины отрезка
- •10.Определение угла наклона прямой к плоскости
- •11.Определение расстояния от точки до прямой
- •12.Взаимное положение прямой и плоскости
- •15.Метод замены плоскостей проекции.
- •16.Понятие многогранника.
- •Построение проекций многогранников
- •16.Поверхности
78. Прямоугольная диметрия § 78. Прямоугольная диметрия
Прямоугольная диметрия характеризуется тем, что коэффициенты искажения, определенные из выражения (1), и = w = 0,94, a v = 0,47. Определяют их следующим образом:
u2+(u/2)2+u2=2;
u2 =8/9; u = w = (8/9)1/2=0,94; v = 0,47.
В соответствии с ГОСТ 2.317—69 практические построения в прямоугольной диметрии следует выполнять пользуясь приведенными коэффициентами искажения: u = w=1 и v = 0,5.
Расположение осей стандартной прямоугольной диметрии показано на рис. 162. Аксонометрический масштаб для прямоугольной диметрии будет МA 1,06 : 1.
В прямоугольной диметрии равные окружности диаметра d, лежащие в координатных плоскостях хОу и уО, проецируются в равные эллипсы, большая ось которых 2а = 1,06d, а малая — 2b = 0,35d, если пользуемся приведенными коэффициентами искажения. Окружность, расположенная в плоскости xOz, проецируется в эллипс с осями: большая ось которых 2а1 = 1,066d, малая ось — 2b1 = 0,95d (рис. 163). Диаметры.окруж-
Рис. 162
Рис. 163
Рис. 164
ности, параллельные координатным осям, спроецируются в отрезки, параллельные осям диаметрии l1 = l2 = d; l = 0,5d, при этом || Ох; l2 ||Оу; l3 || Oz.
Можно построить кроме указанных точек еще четыре точки, симметричные точкам, ограничивающим проекции диаметров, параллельных координатным осям. Тогда эллипс, как диметрию окружности, можно построить по его двенадцати точкам.
Изображение геометрических поверхностей в прямоугольной ди-метрии рассмотрим на примере построения стандартной прямоугольной диметрии прямого кругового цилиндра. На рис. 164 приведен пример комплексного чертежа полого цилиндра высотой Н c наружным d и внутренним d1диаметрами. Цилиндр расположим в натуральную величину в натуральной системе координат Oxyz, относительно которой построим диметрическую его проекцию. Как и в случае построения окружностей в изометрии, в диметрии также начнем построение фигуры с эллипсов верхнего и нижнего оснований цилиндра, которые являются изометрическими проекциями окружностей этих оснований. Окружности основания расположены в плоскостях, параллельных горизонтальной плоскости проекций, поэтому, пользуясь приведенными ранее правилами, определим, что большие оси эллипсов будут перпендикулярны оси Oz. Малые оси эллипсов совпадут с направлением оси Oz. Центры осей эллипсов нижнего и верхнего оснований расположены на расстоянии Я. Величины осей определяем в зависимости от величины наружного и внутреннего диаметров цилиндров. Построив эллипсы, приведем очерковые линии, касательные к внешним эллипсам.
Для наглядности построим вырез четверти цилиндра, построение которого видно из рис. 164. Направление штриховки выреза выберем, как показано на рис. 200. Невидимые линии покажем штриховыми линиями. Для наглядности такими же линиями покажем линии вырезанной части цилиндра. Видимые контурные линии наводят нужной толщиной.
162.gif
163.gif
164.gif
НАЧЕРТАТЛЬНАЯ ГЕОМЕТРИЯ!!!
1.Метод проекций.
ЦЕНТРАЛЬНОЕ ПРОЕЦИРОВАНИЕ
Основными видами проецирования являются центральное и параллельное. Центральное проецирование представляет собой общий случай проецирования геометрических образов из некоторого центра на плоскость.
Пусть задана плоскость П1 и кривая линия k с точками А, В, С (рис.1.1).
Рис.1.1
Возьмем некоторую точку S, не лежащую в плоскости П1. Через точку S и точки А, В, С кривой k проведем прямые до пересечения с плоскостью П1 в точках A1, B1, C1. Проведя таким образом через S и каждую точку кривой k прямые, получим в плоскости П1 изображение k1кривой k.
В соответствии с описанным построением введем следующие понятия:
S - центр проекций; П1 - плоскость проекций; кривая k с точками А, В, С - объект проецирования; SА, SВ, SС - проецирующие лучи;A1,B1,C1 - центральные проекции точек А, В, С; k1 - центральная проекция кривой k. Рассматривая каждую пространственную фигуру как совокупность точек, можно сказать, что проекция фигуры представляет собой множество проекций ее точек.
Свойства центрального проецирования:
1. Любая точка (кроме S) проецируется на плоскость проекций в единственную точку (рис.1).
2. Каждой точке (A, B, C, D,...), принадлежащей какой-либо линии (кривой или прямой), соответствует проекция (A1, B1, C1, D1, ...) этой точки на проекции данной линии (рис.1).
3. Кривая в общем случае проецируется в кривую, а прямая - в прямую. Если прямая совпадает с проецирующим лучом, например DE (рис.1), то она проецируется в точку D1 E1. Плоскость, проходящая через центр проекций, проецируется в прямую и называется проецирующей. Кривая, все точки которой принадлежат проецирующей плоскости, проецируется в прямую.
4. Точка пересечения линий проецируется в точку пересечения проекций этих линий (рис.1).
Центральное проецирование обладает большой наглядностью и применяется в строительном черчении, в архитектуре, в живописи и т.п. Недостатком центрального проецирования является сложность построения изображения предмета и определения истинных размеров. Поэтому оно имеет ограниченное применение в техническом черчении.
ПАРАЛЛЕЛЬНОЕ ПРОЕЦИРОВАНИЕ
Параллельное
проецирование можно рассматривать как
частный случай центрального проецирования
с бесконечно удаленным центром проекций.
Осуществляется оно пучком параллельных
проецирующих лучей заданного направления.
Пусть требуется построить параллельную
проекцию кривой k на
плоскость П1(рис.1.2).
Рис.
1.2
Рис.1.3
Спроецируем в направлении s все точки кривой k на плоскость П1. Чтобы спроецировать точки указанной кривой, например А, В, С, нужно провести через них прямые, параллельные направлению s, до пересечения с плоскостью П1. Точки пересечения A1,B1,C1 проецирующих лучей с плоскостью П1 и будут параллельными проекциями точек А, В и С. Таким образом можно построить проекции множества точек кривой k. В зависимости от направления проецирования по отношению к плоскости проекций П1 различают два вида параллельных проекций: косоугольную, когда проецирующие лучи не перпендикулярны к плоскости П1 (рис. 1.2, кривая k), и прямоугольную (или ортогональную), когда проецирующие лучи перпендикулярны к плоскости проекций (рис.1.2, прямая а). Несмотря на то, что параллельное проецирование по сравнению с центральным дает меньшую наглядность, параллельные проекции, особенно ортогональные, обладают удобоизмеримостью и простотой построения. Поэтому ортогональное проецирование широко распространено в технике и является основным методом начертательной геометрии.
Свойства параллельного проецирования
При параллельном проецировании сохраняются все свойства центрального проецирования, а также возникают следующие новые свойства.
1. Проекции параллельных прямых параллельны между собой, т.е., если а b, то a1 b1. Пусть отрезки АВ и DE параллельны (рис. 1.3), тогда проецирующие плоскости AA1BB1 и DD1E1E будут также параллельны. Следовательно, линии A1B1 и D1E1 пересечения этих плоскостей с П1 будут параллельны.
2.Отношение отрезков, принадлежащих параллельным прямым или одной прямой, равно отношению проекций этих отрезков, т.е., если ABDE, то AB / DE = A1B1 / D1E1
3. При параллельном перемещении плоскости проекций проекция фигуры не изменяется. Если П1П2, то A1B1C1 = A2B2C2 (рис.1.4).
Рис.1.4
Рис.1.5
Свойства ортогонального проецирования
Наряду со свойствами параллельного (косоугольного) проецирования ортогональное проецирование имеет следующие свойства.
1. Отрезок прямой в общем случае равен гипотенузе прямоугольного треугольника, у которого один катет равен его проекции на данную плоскость проекции, а второй - разности расстоянии концов отрезка до этой плоскости (рис.1.5).
2. Любой отрезок прямой и плоская фигура, параллельные плоскости проекций, проецируются на эту плоскость без искажения (рис.1.6), например, если АВ П1, то A1B1 = AB ; ABC П1, то A1B1C1 = ABC.
Рис.1.6
Рис.1.7
3. Проекция любой фигуры (плоской фигуры, отрезка прямой и т.д.) не может быть больше самой фигуры (как следствие п. 1 и 2).
4. Ортогональные проекции двух взаимно перпендикулярных прямых, одна из которых параллельна плоскости проекций, а другая не перпендикулярна ей, взаимно перпендикулярны, т.е., если a b, и a П1, то a1 b1 (рис.1.7). Пусть дано a b. Построим проекцию a b на П1. AA1 П1 (как проецирующий луч), следовательно, плоскость Г (AA1 b) также перпендикулярна П1. Прямая а перпендикулярна плоскости Г, так как она перпендикулярна двум прямым AA1 и b, принадлежащим плоскости Г. Но a1 a (a П1) и, следовательно, a Г, откуда A1 перпендикулярна любой прямой плоскости Г, в том числе и b1. Отсюда справедливо, что a1 b1. Это доказательство относится как к пересекающимся прямым, так и к скрещивающимся. Как видно из чертежа, если с Г, а Г , то c1 a1.