Скачиваний:
477
Добавлен:
04.03.2014
Размер:
4.9 Mб
Скачать

6.3. Датчики изображений

В настоящее время промышленно выпускается большая гамма датчиков изображений для самых разных целей (производственных, медицинских, военных и др.). Независимо от назначения и принципа действия все они содержат оптоэлектронный преобразователь, служащий для преобразования сфокусированного оптического изображения в электрический видеосигнал. Это изображение формируется в ЧЭ преобразователя, который изменяет свое состояние под действием излучения объекта. Если это излучение лежит в диапазоне видимых волн ( = 0,38 … 0,78 мкм), датчик относится к классу телекамер, если в диапазоне 0,78 … 1000 мкм - к классу ИК камер. Большинство материалов непрозрачны в видимом и ближнем ИК диапазонах спектра, однако, хорошо пропускают СВЧ излучение. Эта особенность используется при разработке разнообразных тепловизионных камер, функционирующих в широком диапазоне длин волн. Так, для традиционных тепловизоров характерно применение волн среднего ИК диапазона (2 … 10 мкм), для которых ткани организма слабопрозрачны. Системы глубокого проникания работают в СВЧ диапазоне ( = 1 … 100 мм), обеспечивая непосредственное изучение теплового режима органов тела. Изменением длины волны излучения можно регулировать глубину зондирования от 200 … 300 мм при = 100мм, до 1 … 2 мм при = 1 мм. При дальнейшем увеличении длины волны разрешающая способность системы падает.

В СТЗ обычно используются телекамеры. Выпускаемые промышленно телекамеры по своим эксплуатационным параметрам разделяют на три класса: «Brand name» (например, японские «Sony», «Panasonic», «Sharp»), «No name», к которым относятся большинство камер, выполненных в виде одной или двух печатных плат, установленных в корпус. Третий класс образуют специализированные телекамеры, разработанные фирмами-ла­бо­Ра­то­риями (например, «Watec», Япония, «ЭВС», Россия). Благодаря наличию специалистов длительное время работающих в данной области, телекамеры таких фирм не уступают, а иногда и превосходят системы «Brand name». В таких лабораториях ведутся разработки новых перспективных СТЗ. Так, в одной из них - Human Interface Technology (США) создана камера нового типа - виртуальный глазной дисплей (Virtual Retinal Display - VRD). Это устройство, имеющее вид очков с угловым полем зрения каждого 1200, содержит три миниатюрных лазера, действующих в красной, зеленой и синей областях спектра. Раз­вертка с частотой кадровой развертки 60 Гц осуществляется прямо на сетчатку глаза.

Датчики СТЗ классифицируются по трем основным признакам.

  1. По размерности: точечные (фотоэлементы), одномерные (линейки) и двумерные (матрицы).

  1. По структуре преобразователя «свет-сиг­нал»: ва­куум­ные (электронно-лучевые трубки) и твердотельные.

  2. По рабочему диапазону длин волн: видимого спектра, инфракрасные (в том числе - тепловые) и специальные.

К основным характеристикам телекамер относятся:

  • разрешающая способность (апертурная характеристика);

  • чувствительность;

  • спектральная характеристика.

Разрешающая способность (разрешение) n характери­зует свойство телекамеры к воспроизведению мелких деталей. Она показывает, насколько четким получается изображение объекта. Обычно, разрешение измеряется в телевизионных линиях - твл - вертикальных полосах, расположенных по экрану телекамеры. На практике n определяется с помощью разнообразных тестовых таблиц, отдельно для черно-белого и цветного изображений. Например, тестовая испытательная таблица ИТМ-05-98 предназначена для визуальной оценки разрешающей способности по цвету по горизонтали и вертикали на соответствие международным нормам и отечественным стандартам. Она позволяет анализировать аналоговое изображение в системах PAL, SECAM, NTSC, RGB, компонентный сигнал Y, R-Y, B-Y, а также цифровые изображения в форматах 4:2:2, 4:2:0, 4:1:1 и т.п. Для современных телекамер n = 380 ... 600 линий и различается по длине и ширине экрана. В направлении кадровой развертки она ограничена количеством строк разложения. Разрешающая способность зависит как от освещенности, понижаясь с уменьшением последней ниже определенного предела, так и от материала мишени (рис. 6.19).

Как уже отмечалось, разрешающая способность глаза (острота зрения) весьма высока и существенно зависит от длины волны (скотопическое и фотопическое зрение). Так, например, в области максимальной чувствительности глаз различает более 600 оттенков серого, при остроте зрения 1'. Что касается хроматической разрешающей способности (разрешение по цвету), то она значительно ниже. Например, применительно к полосам красно-зеленых тонов она в 2,5 раза, а сине-зеленых в 5 раз хуже, чем для черно-бе­лых.

Для бытового телевизионного вещания удовлетворительное изображение получается при 120 ... 150 строках для крупных планов и 250 ... 300 для мелких. Для лучших моделей эти значения выше, однако, существенно различаясь для черно-белого и цветного изображений. Так, для телевизионной трубки (кинескопа) ма­р­ки 54CTV670i-5 разрешение в канале яркости составляет 420 твл, а в канале цветности - всего 60.

Чувствительность телекамеры S (рис. 6.20) характеризуется величиной минимальной освещенности , при которой обеспечивается заданное качество изображения (разрешающая способность или число передаваемых градаций яркости). Заданное качество должно достигаться в достаточно широком динамическом диапазоне освещенностей D = max/min. Телекамера считается хорошей, если этот диапазон составляет 2 … 3 порядка.

Характеристики минимальной освещенности для различных камер выбираются исходя из условий конкретной съемки (табл. 6.6).

Таблица 6.6. Уровни минимальной освещенности телекамер

Обстановка

Освещенность , лк

Сумерки

4

Ясная ночь, полная луна

0,2

Ясная ночь, неполная луна

0,02

Ночь, луна в облаках

0,007

Безлунная ночь

менее 0,002

Отечественным стандартом установлено, что ток сигнала в режиме максимальной чувствительности Smax не должен быть меньше 0,1 мкА при освещенности 1 лк.

Для цветных телекамер характерна существенно меньшая чувствительность (в 5 …10 раз) и разрешающая способность (в 1,5 … 2 раза) по сравнению с черно-белыми камерами. Однако в высокопрофессиональных цветных телекамерах иногда отдельно указываетсяцветовая чувствительность, определяемая в области максимальной чувствительности. Она определяется как изменение компоненты сигнала цветности при изменении длины волны цвета. У человека эта характеристика весьма высока - в сине-зеленой части спектре глаз фиксирует изменение длины волны в пределах 1 нм.

Телекамеры высокой чувствительности называемые «ночными» обладают чувствительностью в диапазоне 0,005 …0,00004 лк.

Спектральная характеристика телекамеры (рис. 6.21) определяется материалом ее мишени. Промышленно выпускаются телекамеры видимого света, так и рентгеновского, УФ и ИК излучений.

Фирма Sony в 1998 г. разработала портативную камеру специального назначения NightShot, работающую в инфракрасном диапазоне и предназначенную для съемок в кромешной темноте (looking throw camera). Телекамеры подобного типа, оснащенные специальными фильтрами, отсека­ющими часть диапазона видимого спектра, после известных событий 11 сентября установлены в таможенных терминалах США.

Рассмотрение принципов построения телевизионных камер начнем с вакуумных передающих трубок. Вакуумные электронно-лучевые трубки (ЭЛТ) относятся к преобразователям изображения сканирующего типа (в отличие от несканирующих, типа жидкокристаллических, магнитооптических и люминофорных). По способу съема сигнала и типу мишени их принято разделять на следующие классы: диссекторы; суперортиконы (изоконы); видиконы (в том числе плюмбиконы и кремниконы), а также производные от них супервидиконы (секоны) и пировидиконы.

Рассмотрим некоторые популярные вакуумные датчики СТЗ, основанные на различном типе фотоэффекта. К ним, в первую очередь, относятся диссекторы, суперортиконы и видиконы.

Диссектор, схема которого разработана американцем Ф. Фарнсуортом в 1931 г., обладает наивысшей среди всех ЭЛТ разрешающей способностью и чувствительностью. В так называемом режиме «сче­та электронов» возможна регистрация оптических сигна­лов от объектов, освещенность  которых не превышает 10-7 лк. (Для сравнения:1 лк приблизительно соответствует освещенности от свечи на расстоянии 1 м). Принцип действия диссектора основан на внешнем фотоэффекте. Его важной особенностью является отсутствие накопления зарядов на фотокатоде, что приводит, в свою очередь, к отсутствию «смазы­вания» изображений движущихся объектов. Благодаря этому диссектор называется «трубкой мгновенного действия». Другое его преимущество связано с возможностью формирования различных траекторий развертки. К недостаткам диссектора относятся сравнительно боль­шие габариты.

Схема суперортикона была предложена в 1938 г. советским физиком Г. Браузе. Прибор представляет собой высо­ко­чув­ствительную ЭЛТ с несколькими каскадами усиления и работает по принципу накопления зарядов. Изображение пе­ре­но­сится с фотокатода на двухстороннюю мишень, считывается с нее медленными электронами и усиливается фотоэлектронным умножителем. Ко­эффициент уси­ления суперортикона достигает 104, что обеспечивает отношение сиг­нал/шум около 100 при освещенности фотокатода  0,1 лк. Суперортиконы, также как и диссекторы, способны работать практически в полной темноте. Их основные недостатки связаны со значительными размерами, малой контрастной чувствительностью и сравнительно невысоким динамическим диапазоном. В настоящее время суперортиконы используются во многих телевизионных системах.

Самый распространенный телевизионный датчик видикон представляет собой малогабаритную ЭЛТ с накоплением заряда, действие которой основано на внутреннем фотоэффекте. Проект видикона был разработан в 1925 г. А. Чернышевым, первая промышленный прибор изготовлен в 1950 г . Сейчас выпускаются несколько типов видиконов, отличающихся характеристиками мишени, системы отклонения луча и др. Известные модели видикона - плюм­бикон и кремникон, отличаются надежностью, высокими фотоэлектрическими параметрами, малыми габаритами и массой, что позволяет их широко использовать в сис­темах цветного телевидения. Луч­шие из видиконов обеспечивают разрешение до 10000 линий. К недостаткам видиконов по сравнению с суперортиконами, относятся меньшая чувствительность и большая инер­ционность.

Видиконы дали рождение другим телевизионным трубкам супервидикону и пировидикону. Первые появились в 60-х годах ХХ века и представляли собой своего рода гибрид видикона с суперотиконом. Они также содержат секцию переноса заряда, что позволяет обеспечить коэффициент усиления свыше 103, уступая в этом только суперортикону, но превосходя его по массогабаритным показателям. Пировидиконы используются в системах тепловидения.

Некоторые параметры рассмотренных вакуумных трубок приведены в табл. 6.7.

Таблица 6.7. Сравнительная характеристика некоторых типов вакуумных телекамер

Тип

Принцип действия

, мкм

n, твл

Отношение

сигнал/шум

, лк

min/max

, мм

(m, кг)

диссектор

внешний фотоэффект

0,4 ... 0,8

125 ... 3500

18 ... 50

5 10-6/5

25

суперортикон

внешний фотоэффект + каскадное усиление

0,25 ...1,2

500 ... 1000

3 ... 80

2 10-3/100

80 (0,5)

видикон

внутренний фотоэффект

0,1 ... 2,5

400 ... 800

2 ... 50

0,1/1000

13 (0,02)

Соседние файлы в папке Учебник - информационные системы