
- •Физика нефтяного и газового пласта
- •1. Природные коллекторы нефти и газа и их физические свойства
- •1.1. Газонефтяное месторождение
- •1.2. Виды неоднородности строения нефтяных залежей
- •1.3. Геометрические параметры горных пород-коллекторов
- •1.4. Фильтрационно-ёмкостные параметры коллекторов.
- •Параметры трещинной среды.
- •1.5. Насыщенность коллекторов
- •1.6 Проницаемость
- •1.7. Зависимость проницаемости от насыщенности коллекторов
- •1.8. Методы определения относительной проницаемости
- •2. Состав и физико-химические свойства нефти
- •2.1. Состав нефти
- •2.2. Классификация нефтей
- •2.3. Физико–химические свойства нефти
- •2.3.1. Плотность нефти
- •2.3.2. Вязкость нефти
- •2.3.3. Сжимаемость нефти
- •2.4. Различие свойств нефти в пределах нефтеносной залежи
- •Классификация природных газов
- •3.2. Основные параметры
- •2.2.1.Газовые законы
- •3.2.2. Параметры газовых смесей
- •3.2.3. Критические и приведённые термодинамические параметры
- •3.3. Уравнения состояния
- •3.3.1. Уравнения состояния природных газов
- •3.3.2. Обобщённое уравнение состояния
- •3.4. Физико-химические и теплофизические свойства природных газов
- •3.4.1. Вязкость
- •3.4.2. Качественная зависимость вязкости газов и жидкостей от температуры.
- •3.4.3. Теплоёмкость
- •3.4.4. Дросселирование газа. Коэффициент Джоуля-Томсона
- •3.4.5. Влажность природных газов
- •4. Фазовые состояния углеводородных систем
- •4.1. Схема фазовых превращений однокомпонентных систем
- •4.2. Фазовые состояния углеводородных смесей
- •4.3. Фазовые переходы в нефти, воде и газе
- •5 Пластовые воды
- •5.1. Физическое состояние воды в горных породах
- •1) Природы воздействующих на воду сил;
- •5.2 Физические свойства пластовых вод
- •5.3 Минерализация пластовой воды
- •5.4 Состояние остаточной (связанной) воды в нефтяных и газовых коллекторах
- •6. Поверхностно–молекулярные свойства системы пласт–вода–нефть–газ
- •6.1. Роль поверхностных явлений в фильтрации
- •6.2. Поверхностное натяжение
- •6.3. Смачивание и краевой угол
- •6.4. Работа адгезии и когезии, теплота смачивания
- •6.5. Кинетический гистерезис смачивания
- •7. Физические основы вытеснения нефти водой и газом из пористых сред
- •7.1. Силы, противодействующие вытеснению нефти из пласта
- •7.2. Схема вытеснения из пласта нефти водой и газом
- •7.3. Использование теории капиллярных явлений для установления зависимости нефтеотдачи от различных факторов
- •2.3.3. Сжимаемость нефти
4. Фазовые состояния углеводородных систем
В процессе разработки месторождений в пластах непрерывно изменяются давление, температура. Это сопровождается непрерывным изменением состава газовой и жидкой фаз и переходом различных углеводородов из одной фазы в другую. Особенно быстро такие превращения происходят при движении нефти по стволу скважины от забоя к устью.
Дальнейшее движение нефти и газа к потребителю также сопровождается непрерывными фазовыми превращениями. Закономерности фазовых переходов и фазовое состояние газонефтяных смесей при различных условиях необходимо знать для решения многих задач.
Интенсивность выделения газовой фазы из нефти зависит от многих факторов, основными из которых являются:
- темп снижения давления и температуры при движении нефтяного потока;
- наличие в составе нефти лёгких углеводородов (С2–С6);
- молекулярная масса нефти;
вязкость нефти.
4.1. Схема фазовых превращений однокомпонентных систем
Углеводородные газы, подобно всем индивидуальным веществам, изменяют свой объём при изменении давления и температуры. На рис. 10. представлена диаграмма фазового состояния для чистого этана. Каждая из кривых соответствует фазовым изменениям при постоянной температуре и имеет три участка. Слева от пунктирной линии отрезок соответствует газовой фазе, горизонтальный участок – двухфазной газожидкостной области, левый участок – жидкой фазе. Отрезок пунктирной линии вправо от
Рис. 10. Диаграмма фазового состояния чистого метана
максимума в точке С называется кривой точек конденсации (или точек росы), а влево от максимума – кривой точек парообразования (кипения). В точке С пунктирной линии кривые парообразования и конденсации сливаются. Эта точка называется критической.
С приближением температуры и давления к критическим значениям свойства газовой и жидкой фаз становятся одинаковыми, поверхность раздела между ними исчезает, и плотности их уравниваются. Следовательно, с приближением к критической точке по кривой начала кипения плотность жидкой фазы будет непрерывно убывать. Если же к ней приближаться по линии точек конденсации, то плотность пара будет непрерывно возрастать.
Для индивидуальных углеводородов граничным давлением (при данной температуре) между жидкой и газовой фазой является давление упругости паров, при котором происходит конденсация или испарение. Обе фазы (жидкость и пар) при данной темпера-туре присутствуют в системе только в том случае, если давление равно упругости насыщенного пара над жидкостью. Давление, при котором газ начинает конденсироваться, называется давлением насыщения для газа.
Фазовые превращения углеводородов можно также представить в координатах давление-температура (рис. 11). Для однокомпонентной системы кривая давления насыщенного пара на графике давление-температура является одновременно кривой точек начала кипения и линией точек росы. При всех других давлениях и температурах вещество находится в однофазном состоянии.
Фазовая диаграмма индивидуальных углеводородов ограничивается критической точкой С (рис. 11). Для однокомпонентных систем эта точка определяется наивысшими значениями давления и температуры, при которых ещё могут существовать две фазы одновременно.
И
Рис.
11. Фазовая
диаграмма индивидуальных углеводородов