
- •Физика нефтяного и газового пласта
- •1. Природные коллекторы нефти и газа и их физические свойства
- •1.1. Газонефтяное месторождение
- •1.2. Виды неоднородности строения нефтяных залежей
- •1.3. Геометрические параметры горных пород-коллекторов
- •1.4. Фильтрационно-ёмкостные параметры коллекторов.
- •Параметры трещинной среды.
- •1.5. Насыщенность коллекторов
- •1.6 Проницаемость
- •1.7. Зависимость проницаемости от насыщенности коллекторов
- •1.8. Методы определения относительной проницаемости
- •2. Состав и физико-химические свойства нефти
- •2.1. Состав нефти
- •2.2. Классификация нефтей
- •2.3. Физико–химические свойства нефти
- •2.3.1. Плотность нефти
- •2.3.2. Вязкость нефти
- •2.3.3. Сжимаемость нефти
- •2.4. Различие свойств нефти в пределах нефтеносной залежи
- •Классификация природных газов
- •3.2. Основные параметры
- •2.2.1.Газовые законы
- •3.2.2. Параметры газовых смесей
- •3.2.3. Критические и приведённые термодинамические параметры
- •3.3. Уравнения состояния
- •3.3.1. Уравнения состояния природных газов
- •3.3.2. Обобщённое уравнение состояния
- •3.4. Физико-химические и теплофизические свойства природных газов
- •3.4.1. Вязкость
- •3.4.2. Качественная зависимость вязкости газов и жидкостей от температуры.
- •3.4.3. Теплоёмкость
- •3.4.4. Дросселирование газа. Коэффициент Джоуля-Томсона
- •3.4.5. Влажность природных газов
- •4. Фазовые состояния углеводородных систем
- •4.1. Схема фазовых превращений однокомпонентных систем
- •4.2. Фазовые состояния углеводородных смесей
- •4.3. Фазовые переходы в нефти, воде и газе
- •5 Пластовые воды
- •5.1. Физическое состояние воды в горных породах
- •1) Природы воздействующих на воду сил;
- •5.2 Физические свойства пластовых вод
- •5.3 Минерализация пластовой воды
- •5.4 Состояние остаточной (связанной) воды в нефтяных и газовых коллекторах
- •6. Поверхностно–молекулярные свойства системы пласт–вода–нефть–газ
- •6.1. Роль поверхностных явлений в фильтрации
- •6.2. Поверхностное натяжение
- •6.3. Смачивание и краевой угол
- •6.4. Работа адгезии и когезии, теплота смачивания
- •6.5. Кинетический гистерезис смачивания
- •7. Физические основы вытеснения нефти водой и газом из пористых сред
- •7.1. Силы, противодействующие вытеснению нефти из пласта
- •7.2. Схема вытеснения из пласта нефти водой и газом
- •7.3. Использование теории капиллярных явлений для установления зависимости нефтеотдачи от различных факторов
- •2.3.3. Сжимаемость нефти
3.4.3. Теплоёмкость
Теплоемкостью С называют количество теплоты, необходимое для нагревания единицы массы или объема вещества на 1 °С.
Удельная теплоемкость - отношение теплоёмкости к единице количества газа.
Для
газов обычно различают теплоемкости
при постоянном объеме Сv
и постоянном давлении Cp.
Сv
связана с процессом, характеризующимся
тем, что при неизменности объема вся
энергия, сообщаемая газу в форме теплоты,
затрачивается на увеличение внутренней
энергии газа. Cp
связана с процессом, характеризующимся
тем, что, нагревая тело, предоставляют
ему возможность расширяться при
неизменном давлении. Таким образом,
часть сообщенной телу теплоты идет на
производство работы расширения. Поэтому
.
Для идеальных газов между Cp и Сv существует следующее соотношение:
,
где
—
газовая постоянная.
В области давлений, где газы считаются идеальными, значения теплоемкостей постоянны. Однако для реальных газов значения теплоемкости изменяются в зависимости от давления и температуры.
Для смеси газов теплоемкость определяется по сумме теплоемкости входящих компонентов по формуле:
, (3.28)
где
Ci
- теплоемкости отдельных компонентов
смеси; yi
— объемное (молярное) содержание
компонентов в долях единицы;
– число компонент.
Связь молярной теплоемкости углеводородных и неуглеводородных компонент. При изобарическом процессе молярная теплоёмкость неуглеводородных компонентов природных газов (азота, углекислого газа, сероводорода) равна примерно половине теплоёмкости углеводорода с одинаковой молекулярной массой при одной и той же температуре.
Связь молярной теплоемкости с массовой. Массовая теплоёмкость равна отношению молярной теплоёмкости к молекулярной массе газа Mi, т.е. массе киломоля -го компонента, кг/моль.
3.4.4. Дросселирование газа. Коэффициент Джоуля-Томсона
Дросселирование — расширение газа при прохождении через дроссель - местное сопротивление (вентиль, кран и т.д.), сопровождающее изменением температуры.
Отношение изменения температуры газа в результате его изоэнтальпийного расширения (дросселирования) к изменению давления называется дроссельным эффектом, или эффектом Джоуля-Томсона.
При охлаждении газа эффект считается положительным, при нагревании его — отрицательным.
Изменение температуры при снижении давления на 1атм (0.1Мпа) называется коэффициентом Джоуля-Томсона. Этот коэффициент изменяется в широких пределах и может иметь положительный или отрицательный знак.
Изменение температуры газа в процессе изоэнтальпийного расширения при значительном перепаде давления на дросселе называется интегральным дроссель-эффектом. Это изменение можно определить по соотношению:
. (3.29)
Интегральный коэффициент Джоуля-Томсона для природного газа изменяется от 2 до 4 К/МПа в зависимости от состава газа, падения давления и начальной температуры газа. Для приближенных расчетов среднее значение коэффициента Джоуля-Томсона можно принять равным 3 К/МПа.
3.4.5. Влажность природных газов
Природный газ в пластовых условиях всегда насыщен парами воды, так в газоносных породах всегда содержится связанная, подошвенная или краевая вода.
Влажность газа характеризуется концентрацией воды в паровой фазе системы газ — вода. Обычно она выражается массой паров воды, приходящейся на единицу массы сухого газа (массовая влажность) или числом молей паров воды, приходящейся на моль сухого газа (молярная влажность).
Абсолютная влажность W характеризуется количеством водяного пара в единице объема газовой смеси, приведенной к нормальным условиям (T0 К, p = 0,1 МПа), измеряется в г/м3 или кг/1000м3.
Относительная влажность — отношение абсолютной влажности к максимальной, соответствующей полному насыщению парами воды, при данной температуре и давлении (в %). Полное насыщение оценивается в 100 %.
Факторы, определяющие влагосодержание природных газов: давление, температура, состав газа, количество солей, растворенных в воде, контактирующей с данным газом.
Методы определения влагосодержания: экспериментально, по аналитическим уравнениям или номограммам, составленным при обработке экспериментальных или расчетных данных.
Влияние неуглеводородных компонент (углекислого газа и сероводорода) - увеличивает их влагосодержание. Наличие азота приводит к уменьшению влагосодержанияю, так как он способствует уменьшению отклонения газовой смеси от идеального газа и менее растворим в воде. С увеличение плотности (или молекулярной массы газа), за счет роста количества тяжелых углеводородов, влажность газа уменьшается из-за взаимодействия молекул тяжелых углеводородов с молекулами воды. Наличие в пластовой воде растворенных солей уменьшает влагосодержание газа, так как при растворении солей в воде снижается парциальное давление паров воды.
При уменьшении температуры происходит уменьшение влагосодержания, а при падении давления его увеличение.